1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
#include "IKBPLibrary.h" #include "IK.h"
UIKBPLibrary::UIKBPLibrary(const FObjectInitializer& ObjectInitializer) : Super(ObjectInitializer) {
}
float UIKBPLibrary::IKSampleFunction(float Param) { return -1; }
void UIKBPLibrary::InverseKinematics(FVector pos, FRotator rot, float p, float &Joint0, float &Joint1, float &Joint2, float &Joint3, float &Joint4, float &Joint5, float &Joint6) { FILE* fp = fopen("test.txt", "w"); float JointAngle[NB_JOINT] = {}; float Alpha[NB_JOINT] = {}; float A[NB_JOINT] = {}; float D[NB_JOINT] = {};
Alpha[0] = -90 * PI / 180.0; Alpha[1] = 90 * PI / 180.0; Alpha[2] = -90 * PI / 180.0; Alpha[3] = 90 * PI / 180.0; Alpha[4] = -90 * PI / 180.0; Alpha[5] = 90 * PI / 180.0; Alpha[6] = 0;
A[0] = A[1] = A[2] = A[3] = A[4] = A[5] = A[6] = 0;
D[0] = 360; D[1] = 0; D[2] = 420; D[3] = 0; D[4] = 400; D[5] = 0; D[6] = 110;
FVector err; err = rot.RotateVector(FVector(0, 0, D[6])); err.X = -err.X; err.Y = -err.Y;
FVector wristPos = pos - err;
FVector WristPos; WristPos = wristPos;
fprintf(fp, "wristPos : %f\t, %f\t, %f\t", wristPos.X, wristPos.Y, wristPos.Z); FVector shoulderToWrist = wristPos - FVector(0, 0, D[0]);
FVector unitStoW = shoulderToWrist / shoulderToWrist.Size();
FRotator k; FRotationMatrix kw(k); kw.M[0][0] = 0; kw.M[0][1] = -unitStoW.Z; kw.M[0][2] = unitStoW.Y; kw.M[1][0] = unitStoW.Z; kw.M[1][1] = 0; kw.M[1][2] = -unitStoW.X; kw.M[2][0] = -unitStoW.Y; kw.M[2][1] = unitStoW.X; kw.M[2][2] = 0;
FRotator identity; FRotationMatrix Identity(identity); Identity.M[0][0] = 1; Identity.M[0][1] = 0; Identity.M[0][2] = 0; Identity.M[1][0] = 0; Identity.M[1][1] = 1; Identity.M[1][2] = 0; Identity.M[2][0] = 0; Identity.M[2][1] = 0; Identity.M[2][2] = 1;
float theta4Prime = D[2] * D[2] + D[4] * D[4] - shoulderToWrist.SizeSquared(); theta4Prime = theta4Prime / (2.0 * D[2] * D[4]); JointAngle[3] = PI - acos(theta4Prime);
float theta1Prime = atan2(wristPos.Y, wristPos.X); float alpha = (wristPos.Z - D[0]) / shoulderToWrist.Size(); alpha = asin(alpha); float beta = D[2] * D[2] + shoulderToWrist.SizeSquared() - D[4] * D[4]; beta = beta / (2 * D[2] * shoulderToWrist.Size()); beta = acos(beta); float theta2Prime = PI / 2.0 - alpha - beta;
FRotator Prime; FRotationMatrix rotPrime(Prime); rotPrime.M[0][0] = cos(theta1Prime)*cos(theta2Prime); rotPrime.M[0][1] = -cos(theta1Prime)*sin(theta2Prime); rotPrime.M[0][2] = -sin(theta1Prime); rotPrime.M[1][0] = cos(theta2Prime)*sin(theta1Prime); rotPrime.M[1][1] = -sin(theta1Prime)*sin(theta2Prime); rotPrime.M[1][2] = cos(theta1Prime); rotPrime.M[2][0] = -sin(theta2Prime); rotPrime.M[2][1] = -cos(theta2Prime); rotPrime.M[2][2] = 0;
JointAngle[0] = atan2(wristPos.Y, wristPos.X); JointAngle[1] = theta2Prime; JointAngle[2] = 0; FMatrix T; T.M[0][0] = 1; T.M[0][1] = 0; T.M[0][2] = 0; T.M[0][3] = 0; T.M[1][0] = 0; T.M[1][1] = 1; T.M[1][2] = 0; T.M[1][3] = 0; T.M[2][0] = 0; T.M[2][1] = 0; T.M[2][2] = 1; T.M[2][3] = 0; T.M[3][0] = 0; T.M[3][1] = 0; T.M[3][2] = 0; T.M[3][3] = 1;
for (int i = 0; i < 4; i++) { FMatrix transformationMatirx; transformationMatirx.M[0][0] = cos(JointAngle[i]); transformationMatirx.M[0][1] = -sin(JointAngle[i]) * cos(Alpha[i]); transformationMatirx.M[0][2] = sin(JointAngle[i])*sin(Alpha[i]); transformationMatirx.M[0][3] = A[i] * cos(JointAngle[i]); transformationMatirx.M[1][0] = sin(JointAngle[i]); transformationMatirx.M[1][1] = cos(JointAngle[i]) * cos(Alpha[i]); transformationMatirx.M[1][2] = -cos(JointAngle[i])*sin(Alpha[i]); transformationMatirx.M[1][3] = A[i] * sin(JointAngle[i]); transformationMatirx.M[2][0] = 0; transformationMatirx.M[2][1] = sin(Alpha[i]); transformationMatirx.M[2][2] = cos(Alpha[i]); transformationMatirx.M[2][3] = D[i]; transformationMatirx.M[3][0] = 0; transformationMatirx.M[3][1] = 0; transformationMatirx.M[3][2] = 0; transformationMatirx.M[3][3] = 1; FMatrix ti = transformationMatirx; T = T * ti; } fprintf(fp, "\n T = \n");
for (int i = 0; i < 4; i++) { for(int j=0; j<4; j++){ fprintf(fp, "%.2f\t", T.M[i][j]); } fprintf(fp, "\n"); } FMatrix rot041; FMatrix Rot04;
float j[2] = {};
rot041 = Rot04 = T; for (int i = 0; i < 3; i++) { rot041.M[i][3] = 0; Rot04.M[i][3] = 0; j[i] = T.M[i][3]; }
fprintf(fp, "\n Rot04 = \n");
for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { fprintf(fp, "%.2f\t", Rot04.M[i][j]); } fprintf(fp, "\n"); }
fprintf(fp, "\n rot041 = \n");
for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { fprintf(fp, "%.2f\t", rot041.M[i][j]); } fprintf(fp, "\n"); }
FVector Pos04; Pos04.X = j[0]; Pos04.Y = j[1]; Pos04.Z = j[2]; FMatrix rot47; rot47.M[0][0] = 1; rot47.M[0][1] = 0; rot47.M[0][2] = 0; rot47.M[0][3] = 0; rot47.M[1][0] = 0; rot47.M[1][1] = 1; rot47.M[1][2] = 0; rot47.M[1][3] = 0; rot47.M[2][0] = 0; rot47.M[2][1] = 0; rot47.M[2][2] = 1; rot47.M[2][3] = 0; rot47.M[3][0] = 0; rot47.M[3][1] = 0; rot47.M[3][2] = 0; rot47.M[3][3] = 1;
FRotationMatrix ROT1(rot); FMatrix ROT = ROT1.GetTransposed(); ROT.M[0][2] = -ROT.M[0][2]; ROT.M[1][2] = -ROT.M[1][2]; ROT.M[2][0] = -ROT.M[2][0]; ROT.M[2][1] = -ROT.M[2][1];
fprintf(fp, "\n rot= \n");
for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { fprintf(fp, "%.2f\t", ROT.M[i][j]); } fprintf(fp, "\n"); }
rot47 = rot041.GetTransposed() * ROT;
fprintf(fp, "\n rot47 = \n");
for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { fprintf(fp, "%.2f\t", rot47.M[i][j]); } fprintf(fp, "\n"); }
if (fabs(rot47.M[0][2]) > 0.000001) { if (rot47.M[0][2] > 0) JointAngle[4] = atan(rot47.M[1][2] / rot47.M[0][2]); else JointAngle[4] = atan(rot47.M[1][2] / rot47.M[0][2]) + PI; } JointAngle[5] = acos(rot47.M[2][2]);
if (fabs(rot47.M[2][0]) > 0.000001) { if (rot47.M[2][0] > 0) JointAngle[6] = atan(-rot47.M[2][1] / rot47.M[2][0]) + PI; else JointAngle[6] = atan(rot47.M[2][1] / rot47.M[2][0]); } Joint0 = JointAngle[0]; Joint1 = JointAngle[1]; Joint2 = JointAngle[2]; Joint3 = JointAngle[3]; Joint4 = JointAngle[4]; Joint5 = JointAngle[5]; Joint6 = JointAngle[6]; fclose(fp); }
|