Normality Test

정규성 검정 function

shapiro.test(), qqnorm(), qqline()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
> library(MASS)
> attach(Cars93)
> shapiro.test(Price)

Shapiro-Wilk normality test

data: Price
W = 0.88051, p-value = 4.235e-07

> str(Price)
num [1:93] 15.9 33.9 29.1 37.7 30 15.7 20.8 23.7 26.3 34.7 ...
> qqnorm(Price)
> qqline(Price)
> qqnorm(log(Price))
> qqline(log(Price))
> shapiro.test(log(Price))

Shapiro-Wilk normality test

data: log(Price)
W = 0.9841, p-value = 0.32
  • 정규분포를 따르지 않으면 sample 수가 적음
  • shaprio.test() - $H_0$ : 정규분포(정규성 분포)
  • shapiro.test(Price) : $p-value \leq 0.05$ 이므로 귀무가설 기각
  • shapiro.test(log(Price)) : $p-value \geq 0.05$ 이므로 귀무가설 채택
qqnorm-price qqline-price
  • 선에 맞춰서 몰려져있어야 정규분포
qqnorm-log-price-qqline-log-price
  • p-value $\leq$ 0.05 이므로 귀무가설 채택

xtabs(), table(), prop.table()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
> str(Cars93)
'data.frame': 93 obs. of 27 variables:
$ Manufacturer : Factor w/ 32 levels "Acura","Audi",..: 1 1 2 2 3 4 4 4 4 5 ...
...
$ Make : Factor w/ 93 levels "Acura Integra",..: 1 2 4 3 5 6 7 9 8 10 ...
> t1=table(Origin);t1
Origin
USA non-USA
48 45
> xtabs(~Origin,Cars93)
Origin
USA non-USA
48 45
> prop.table(table(Origin))
Origin
USA non-USA
0.516129 0.483871
> prop.table(t1)
Origin
USA non-USA
0.516129 0.483871
> options('digits'=3)
> prop.table(table(Origin))
Origin
USA non-USA
0.516 0.484
> prop.table(t1)
Origin
USA non-USA
0.516 0.484
  • ~다음은 보통 범주형 자료
  • xtabs() - attach()없어도 가능
  • prop.table() - 비율 출력
  • options('digits'=n) - 소수 자릿수 수정

with() - 교차표(범주형 2개)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
> t2=with(Cars93,table(Origin,Type));t2
Type
Origin Compact Large Midsize Small Sporty Van
USA 7 11 10 7 8 5
non-USA 9 0 12 14 6 4
> t3=xtabs(~Origin+Type,Cars93);t3
Type
Origin Compact Large Midsize Small Sporty Van
USA 7 11 10 7 8 5
non-USA 9 0 12 14 6 4
> prop.table(t2)
Type
Origin Compact Large Midsize Small Sporty Van
USA 0.0753 0.1183 0.1075 0.0753 0.0860 0.0538
non-USA 0.0968 0.0000 0.1290 0.1505 0.0645 0.0430
> margin.table(t3,1) #행
Origin
USA non-USA
48 45
> margin.table(t3,2) #열
Type
Compact Large Midsize Small Sporty Van
16 11 22 21 14 9
> prop.table(t3)
Type
Origin Compact Large Midsize Small Sporty Van
USA 0.0753 0.1183 0.1075 0.0753 0.0860 0.0538
non-USA 0.0968 0.0000 0.1290 0.1505 0.0645 0.0430
> addmargins(t3)
Type
Origin Compact Large Midsize Small Sporty Van Sum
USA 7 11 10 7 8 5 48
non-USA 9 0 12 14 6 4 45
Sum 16 11 22 21 14 9 93
> addmargins(prop.table(t3))
Type
Origin Compact Large Midsize Small Sporty Van Sum
USA 0.0753 0.1183 0.1075 0.0753 0.0860 0.0538 0.5161
non-USA 0.0968 0.0000 0.1290 0.1505 0.0645 0.0430 0.4839
Sum 0.1720 0.1183 0.2366 0.2258 0.1505 0.0968 1.0000
  • with(), xtabs() - 교차표 생성
  • margin.table() - table의 행 or 열 출력
  • addmargins() - 합계 출력

교차분석(범주형 2개) - CrossTable()

검정통계량

$$\chi^2=\sum_{i}\sum_{j}\frac{(O_{ij}-E_{ij})^2}{E_{ij}} \sim \chi^2_{(a-1)(b-1)}$$

  • a, b - 범주수

가설

$$H_0 : 두\ 변수\ 독립\ O,\ H_1 : 두\ 변수\ 독립\ X$$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
> library(gmodels)
> CrossTable(Origin,Type)


Cell Contents
|-------------------------|
| N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
| N / Table Total |
| --------------- |


Total Observations in Table: 93


| Type
| Origin | Compact | Large | Midsize | Small | Sporty | Van | Row Total |
| ------------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- |
| USA | 7 | 11 | 10 | 7 | 8 | 5 | 48 |
| 0.192 | 4.990 | 0.162 | 1.360 | 0.083 | 0.027 | |
| 0.146 | 0.229 | 0.208 | 0.146 | 0.167 | 0.104 | 0.516 |
| 0.438 | 1.000 | 0.455 | 0.333 | 0.571 | 0.556 | |
| 0.075 | 0.118 | 0.108 | 0.075 | 0.086 | 0.054 | |
| ------------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- |
| non-USA | 9 | 0 | 12 | 14 | 6 | 4 | 45 |
| 0.204 | 5.323 | 0.172 | 1.450 | 0.088 | 0.029 | |
| 0.200 | 0.000 | 0.267 | 0.311 | 0.133 | 0.089 | 0.484 |
| 0.562 | 0.000 | 0.545 | 0.667 | 0.429 | 0.444 | |
| 0.097 | 0.000 | 0.129 | 0.151 | 0.065 | 0.043 | |
| ------------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- |
| Column Total | 16 | 11 | 22 | 21 | 14 | 9 | 93 |
| 0.172 | 0.118 | 0.237 | 0.226 | 0.151 | 0.097 | |
| ------------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- |
> CrossTable(Origin,Type,expected=T,chisq=T)


Cell Contents
|-------------------------|
| N |
| Expected N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
| N / Table Total |
| --------------- |


Total Observations in Table: 93


| Type
| Origin | Compact | Large | Midsize | Small | Sporty | Van | Row Total |
| ------------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- |
| USA | 7 | 11 | 10 | 7 | 8 | 5 | 48 |
| 8.258 | 5.677 | 11.355 | 10.839 | 7.226 | 4.645 | |
| 0.192 | 4.990 | 0.162 | 1.360 | 0.083 | 0.027 | |
| 0.146 | 0.229 | 0.208 | 0.146 | 0.167 | 0.104 | 0.516 |
| 0.438 | 1.000 | 0.455 | 0.333 | 0.571 | 0.556 | |
| 0.075 | 0.118 | 0.108 | 0.075 | 0.086 | 0.054 | |
| ------------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- |
| non-USA | 9 | 0 | 12 | 14 | 6 | 4 | 45 |
| 7.742 | 5.323 | 10.645 | 10.161 | 6.774 | 4.355 | |
| 0.204 | 5.323 | 0.172 | 1.450 | 0.088 | 0.029 | |
| 0.200 | 0.000 | 0.267 | 0.311 | 0.133 | 0.089 | 0.484 |
| 0.562 | 0.000 | 0.545 | 0.667 | 0.429 | 0.444 | |
| 0.097 | 0.000 | 0.129 | 0.151 | 0.065 | 0.043 | |
| ------------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- |
| Column Total | 16 | 11 | 22 | 21 | 14 | 9 | 93 |
| 0.172 | 0.118 | 0.237 | 0.226 | 0.151 | 0.097 | |
| ------------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- |


Statistics for All Table Factors


Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 14.1 d.f. = 5 p = 0.0151



Warning message:
In chisq.test(t, correct = FALSE, ...) :
Chi-squared approximation may be incorrect
  • N, Expected N, 각 셀 chi-square, 행%, 열%, 전체%에서 몇 %를 차지하는지
  • expected=T - 기대빈도
  • chisq=T - 카이제곱분포(표준정규분포 제곱)
  • $16 \times 48 \over 93$
  • $(7-8.258)^2 \over 8.258$
  • 유의수준 0.05 $\geq$ 유의확률 0.015 - 귀무가설 기각
  • Origin에 따라서 Type의 차이 O
  • 행%를 보고 해석 - 핵심적이고 큰 차이가 나는 것을 기술(ex. Large)

ex) 두 변수 독립?

  • $H_0$ : 두 변수 독립(Origin에 따라서 Type 차이 X)
  • $H_1$ : 두 변수 독립 X
O X sum
100 100 200
50 50 100
sum 150 150 300

두 사상이 독립(사건의 독립) $$p(O|남)=\frac{p(O \cap 남)}{p(남)}$$

  • 기대빈도 : 독립이게끔 하는 빈도, 차이가 없게끔 하는 빈도 - $E_{ij}$
  • 관측빈도 - $O_{ij}$

$$\chi^2=\sum_{i}\sum_{j}\frac{(O_{ij}-E_{ij})^2}{E_{ij}} \sim \chi^2_{(a-1)(b-1)}$$

  • a, b - 범주수

상관분석(수치형 2개)

검정통계량

$$T=r\sqrt{\frac{n-2}{1-r^2}}\sim t(n-2)$$

가설

$$H_0 : \rho_{xy}=0,\ H_1 : \rho_{xy}\neq0$$

1
2
3
> plot(Width,Length)
> r=cor(Width,Length);r
[1] 0.822
scatter

상관계수

두 수치변수의 직선적인 정도 - 공분산/분산(무차원수)
$$r_{xy}=\frac{\sum(x_i-\bar x)(y_i-\bar y)}{\sqrt{\sum(x_i-\bar x)^2\sum(y_i-\bar y)^2}}$$

공분산 $$\sum{(x_i-\bar{x})(y_i-\bar{y})}\over n-1$$

표본분산 $$s^2=\frac{\sum{(x_i-\bar{x})^2}}{n-1}$$

  • 곡선형은 상관계수 무의미
  • 산점도 그리고 상관계수
  • $r_{xy}$ - 표본상관계수
  • $\rho_{xy}$ - 모상관계수

t분포

$$T=r\sqrt{\frac{n-2}{1-r^2}}\sim t(n-2)$$

  • 표준정규분포보다 꼬리가 두꺼움
  • $\sigma \over \sqrt{n}$대신 s를 사용하여 자유도 -1 : n-1
  • $Z_{0.025}=1.96 \leq t_{0.025}$
1
2
3
4
5
6
> qnorm(0.95)
[1] 1.64
> qnorm(0.975)
[1] 1.96
> qnorm(0.995)
[1] 2.58
  • df - degree of freedom

유의확률을 수식으로

1
2
3
4
> t=r*sqrt((length(Width)-2)/(1-r^2));t #검정통계량
[1] 13.8
> (1-pt(t,length(Width)-2))*2 #유의확률
[1] 0

일표본 T-검정 - t.test()

평균비교

검정통계량

$$T=\frac{\bar{X}-\mu_0}{s/\sqrt{n}}\sim t(n-1)$$

가설

$$H_0:\mu=\mu_0$$

Example

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
t.test(x,alternative=c('two.sided','less','greater'),mu=175,conf.level=0.95)
> t.test(OBP,mu=0.33,conf.level=0.95)

One Sample t-test

data: OBP
t = -0.168458, df = 437, p-value = 0.8663
alternative hypothesis: true mean is not equal to 0.33
95 percent confidence interval:
0.32571002 0.33361264
sample estimates:
mean of x
0.32966133

> t=(mean(OBP)-0.33)/(sd(OBP)/sqrt(length(OBP)));t
[1] -0.16845758
> pt(t,437)*2 #유의확률
[1] 0.86630125
  • alternative 안쳐도 됨, Default 양측
  • less는 좌단측 greater는 우단측
  • x는 변수명
  • config.level : 1-$\alpha$(유의수준)
  • 위의 값 OBP는 귀무가설 채택

검정통계량 : 양수 - 1-pt() / 음수 - pt()


독립표본 T-검정

모수 $$\mu_1-\mu_2 \ -> \bar X_1 - \bar X_2 \sim N(\mu_1 - \mu_2, \sigma_1^2/n_1 + \sigma_2^2/n_2)$$

$$Z=\frac{(\bar X_1 - \bar X_2)-(\mu_1 - \mu_2)}{\sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}} \sim N(0,1^2)$$

검정통계량

$$\sigma_1^2=\sigma_2^2\ -\ T=\frac{(\bar X_1 - \bar X_2)-(\mu_1 - \mu_2)}{\sqrt{S_p^2(1/n_1 + 1/n_2)}} \sim t(n_1+n_2-2)$$
$$\sigma_1^2\neq\sigma_2^2\ -\ T=\frac{(\bar X_1 - \bar X_2)-(\mu_1 - \mu_2)}{\sqrt{S_1^2/n_1 + S_2^2/n_2}} \sim t(u^*)$$

  • 가중평균 : 집단의 개수가 다르면 가중치를 대입하여 평균 - $n_1 \bar x_1 + n_2 \bar x_2 \over n_1 + n_2$
  • 합동분산 $S_p^2 = \frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{(n_1-1)+(n_2-1)}$ - S는 자유도가 1
  • $u^*$는 실수

가설

$$H_0 : \mu_1-\mu_2=0$$

등분산 검정 - F분포(표본분산)

가설

$$H_0 : \frac{\sigma_1^2}{\sigma_2^2}=1,\ \sigma_1^2=\sigma_2^2$$

  • 분산의 비는 F분포
  • 우단측 검정만 실행
  • 큰 $\sigma$를 위에
1
2
3
4
> 1-pt(1.96,100)
[1] 0.02638945
> 1-pnorm(1.96)
[1] 0.0249979
  • 실제로는 보통 t분포를 사용함

Example

1
2
3
4
5
6
> summary(am)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0000 0.0000 0.4062 1.0000 1.0000
> summary(mpg)
Min. 1st Qu. Median Mean 3rd Qu. Max.
10.40 15.43 19.20 20.09 22.80 33.90
  • 귀무가설 : am에 따라서 mpg의 평균 차이가 없다
1
2
3
4
5
6
7
8
9
10
11
12
> var.test(mpg~am,mtcars)

F test to compare two variances

data: mpg by am
F = 0.38656, num df = 18, denom df = 12, p-value = 0.06691
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.1243721 1.0703429
sample estimates:
ratio of variances
0.3865615
  • var.test() : 등분산 검정 함수(수치~범주)
  • $p=0.06691>0.05$ : 채택 - 등분산
1
2
3
4
5
6
7
8
9
10
11
12
> t.test(mpg~am,mtcars,var.equal=T)

Two Sample t-test

data: mpg by am
t = -4.1061, df = 30, p-value = 0.000285
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-10.84837 -3.64151
sample estimates:
mean in group 0 mean in group 1
17.14737 24.39231
  • 등분산일 경우만 var.equal=T, 이분산은 default
  • $p=0.000285<0.05$ : 기각 - 차이가 있다
  • 양측검정(0이 아니다) - 단측검정이면 유의확률/2
  • 1번 집단의 mpg가 더 크다고 말할 수 있음
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
> t.test(mpg~am,mtcars) # 자유도 소수

Welch Two Sample t-test

data: mpg by am
t = -3.7671, df = 18.332, p-value = 0.001374
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-11.280194 -3.209684
sample estimates:
mean in group 0 mean in group 1
17.14737 24.39231

> var.test(mpg~vs) # 이것도 등분산

F test to compare two variances

data: mpg by vs
F = 0.51515, num df = 17, denom df = 13, p-value = 0.1997
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.1714935 1.4353527
sample estimates:
ratio of variances
0.5151485

성별에 따라 학점 차이? - 등분산 검정


대응표본 T-검정(전후 수치형 2개)

검정통계량

$$T=\frac{\bar D - \mu_D}{S_D/\sqrt{n}} \sim t(n-1)$$

가설

$$H_0 : \mu_{before}-\mu_{after}=\mu_D=0$$

Example

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
> shoes
$A
[1] 13.2 8.2 10.9 14.3 10.7 6.6 9.5 10.8 8.8 13.3

$B
[1] 14.0 8.8 11.2 14.2 11.8 6.4 9.8 11.3 9.3 13.6

> attach(shoes)
> t.test(A,B,paired=T) # paired=T - 대응표본

Paired t-test

data: A and B
t = -3.3489, df = 9, p-value = 0.008539
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.6869539 -0.1330461
sample estimates:
mean of the differences
-0.41

> D=A-B;D
[1] -0.8 -0.6 -0.3 0.1 -1.1 0.2 -0.3 -0.5 -0.5 -0.3
> t.test(D,mu=0) # 일표본 T-검정으로도 가능

One Sample t-test

data: D
t = -3.3489, df = 9, p-value = 0.008539
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-0.6869539 -0.1330461
sample estimates:
mean of x
-0.41
  • $p=0.008539<0.05$ : 귀무가설 기각 - 차이가 있다 - B가 더 크다

일원배치 분산분석

세 집단 이상 평균비교(우단측 검정)

검정통계량

검정통계량 $$F=\frac{S_1^2}{S_2^2}=\frac{MSB}{MSW}$$

가설

$$H_0 : \mu_1 = \mu_2 = … = \mu_k$$
$$H_1 : \mu_j(적어도\ 하나)는\ 같지\ 않다$$

분산

$$S^2=\frac{1}{n-1}\sum(x_i-\bar x)^2$$

  • 편차의 제곱합
  • 자유도로 나눔
  • 평균제곱합

$$Y_{ij}$$

  • i번째 집단 j번째 Data

$$Y_{ij}-\bar Y=(\bar Y_i-\bar Y)+(Y_{ij}-\bar Y_i)$$

$$(Y_{ij}-\bar Y)^2=(\bar Y_i-\bar Y)^2+(Y_{ij}-\bar Y_i)^2$$

$$\sum_i \sum_j (Y_{ij}-\bar Y)^2=\sum_i \sum_j (\bar Y_i-\bar Y)^2+\sum_i \sum_j (Y_{ij}-\bar Y_i)^2$$

$$
총제곱합(Sum\ of\ Square\ Total)
=집단간\ 제곱합(Sum\ of\ Square\ Between)
+집단내\ 제곱합(Sum\ of\ Square\ Within)
$$

$$df : n-1=(k-1)+(n-k)$$

  • k - 집단수

다중비교

  • 귀무가설을 기각할때 차이가 있는지 여부만 알고 어떻게 차이가 있는지 알지 못함
  • 따라서 다중비교, 하지만 분산분석과는 별개

Tukey - HSD(Honest Significant Difference) 방법

  • 가장 보수적

Model(모형)

$$Y_{ij}=\mu_i+\epsilon_{ij}$$

  • 모집단의 형태

Example

1
2
3
4
5
6
7
8
9
> attach(Cars93)
> a1=lm(Width~AirBags,Cars93);a1

Call:
lm(formula = Width ~ AirBags, data = Cars93)

Coefficients:
(Intercept) AirBagsDriver only AirBagsNone
71.875 -2.015 -4.287
  • lm()은 Linear Model의 약자
1
2
3
4
5
6
7
8
9
> anova(a1)
Analysis of Variance Table

Response: Width
Df Sum Sq Mean Sq F value Pr(>F)
AirBags 2 218.68 109.340 8.9856 0.0002767 ***
Residuals 90 1095.15 12.168
---
Signif. codes: 0***0.001**0.01*0.05 ‘.’ 0.1 ‘ ’ 1
  • AirBags 집단간, Residuals 집단내
  • $p=0.0002767<0.05$ : 기각 - 차이가 있다
  • Pr(>F) - 우단측, $P1(F>F_0)$
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
> a2=aov(Width~AirBags,Cars93);a2
Call:
aov(formula = Width ~ AirBags, data = Cars93)

Terms:
AirBags Residuals
Sum of Squares 218.6799 1095.1481
Deg. of Freedom 2 90

Residual standard error: 3.488311
Estimated effects may be unbalanced
> TukeyHSD(a2)
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = Width ~ AirBags, data = Cars93)

$AirBags
diff lwr upr p adj
Driver only-Driver & Passenger -2.014535 -4.448921 0.4198512 0.1250460
None-Driver & Passenger -4.286765 -6.807012 -1.7665170 0.0003127
None-Driver only -2.272230 -4.180014 -0.3644452 0.0153291
  • 다중비교(기각되면 필수)
1
2
3
4
5
> aggregate(Width,by=list(AirBags),mean)
Group.1 x
1 Driver & Passenger 71.87500
2 Driver only 69.86047
3 None 67.58824
  • 1번 그룹의 평균이 큼을 볼 수 있음
  • $D\And P=D>N$
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
> a3=lm(Price~AirBags,Cars93);a3

Call:
lm(formula = Price ~ AirBags, data = Cars93)

Coefficients:
(Intercept) AirBagsDriver only AirBagsNone
28.369 -7.145 -15.195

> anova(a3)
Analysis of Variance Table

Response: Price
Df Sum Sq Mean Sq F value Pr(>F)
AirBags 2 2747 1373.49 21.178 2.901e-08 ***
Residuals 90 5837 64.86
---
Signif. codes: 0***0.001**0.01*0.05 ‘.’ 0.1 ‘ ’ 1
> a4=aov(Price~AirBags,Cars93);a4
Call:
aov(formula = Price ~ AirBags, data = Cars93)

Terms:
AirBags Residuals
Sum of Squares 2746.984 5837.037
Deg. of Freedom 2 90

Residual standard error: 8.05332
Estimated effects may be unbalanced
  • 유의확률 Check
  • lm() - anova()
1
2
3
4
5
6
7
8
9
10
11
> TukeyHSD(a4)
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = Price ~ AirBags, data = Cars93)

$AirBags
diff lwr upr p adj
Driver only-Driver & Passenger -7.145494 -12.76566 -1.525327 0.0088790
None-Driver & Passenger -15.195221 -21.01361 -9.376828 0.0000000
None-Driver only -8.049726 -12.45415 -3.645302 0.0001033
  • diff가 음수이면 뒤가 더 큼
1
2
3
4
5
> aggregate(Price,by=list(AirBags),mean)
Group.1 x
1 Driver & Passenger 28.36875
2 Driver only 21.22326
3 None 13.17353
  • $D\And P>D>N$

회귀분석

$$Y_i(종속)=\beta_0+\beta_1x_i(독립)+\epsilon_i$$
$$\epsilon_i(오차항) \sim N(0,\sigma^2) - 확률변수$$

  • 오차항(회귀분석은 아래 가정을 따라야 함)
    • 정규성
    • 독립성
    • 등분산성
  • 독립변수 -> 종속변수 영향력? - $\beta_1$
  • $\beta_0, \beta_1$ - 모수(상수)
  • $E(Y_i)=\beta_0+\beta_1x_i$
  • $V(Y_i)=\sigma^2$

$$Y_i \sim N(\beta_0+\beta_1x_i,\sigma^2)$$

$$D=\sum_{i=1}^ne_i=\sum_{i=1}^n(Y_i-\hat{Y_i})^2=\sum_{i=1}^n(Y_i-y(x_i))^2$$

  • $e_i$ - Residual(잔차)
  • $\hat{Y_i}$ - 추정량(예측치)

검정통계량

F-검정

$$MSR=\frac{SSR}{k},\ MSE=\frac{SSE}{n-k-1}$$

$$F=\frac{MSR}{MSE}$$

T-검정

$$T=\frac{\hat{\beta_1}-\beta_1}{\sqrt{\frac{MSE}{\sum(x_i-\bar{x})^2}}} \sim t(n-2)$$

  • F는 모든 계수 검정, T는 $\beta_1$만 검정

가설

F-검정

$$H_0 : \beta_1 = 0(회귀모형\ 적합\ X)$$

T-검정

$$H_0 : \beta_0=0, T=\frac{\hat{\beta_0}-\beta_0}{\sqrt{MSE(\frac{1}{n}+\frac{\bar{x}^2}{\sum(x_i-\bar{x})^2})}}\sim t(n-2)$$
$$H_0 : \beta_1=0, T=\frac{\hat{\beta_1}-\beta_1}{\sqrt{\frac{MSE}{\sum(x_i-\bar{x})^2}}} \sim t(n-2)$$

Least squares regression

$$\frac{\partial D}{\partial \hat \beta_0}=0$$
$$\frac{\partial D}{\partial \hat \beta_1}=0$$

$\hat \beta_0,\ \hat \beta_1$의 분포

$$\hat{\beta_0}=\bar{Y}-\hat{\beta_1}\bar{x} \sim N(\beta_0,\sigma^2(\frac{1}{n}+\frac{\bar{x}^2}{\sum(x_i-\bar{x})^2})$$
$$\hat{\beta_1}=\frac{\sum(x_i-\bar{x})(Y_i-\bar{Y})}{\sum(x_i-\bar{x})^2} \sim N(\beta_1,\frac{\sigma^2}{\sum(x_i-\bar{x})^2})$$

분산분석

$$Y_{i}-\bar Y=(\hat Y_i-\bar Y)+(Y_{i}-\hat Y_i)$$

$$\sum (Y_{i}-\bar Y)^2=\sum (\hat Y_i-\bar Y)^2+\sum (Y_{i}-\hat Y_i)^2$$

$$총제곱합(SST)=회귀제곱합(SSR)+잔(오)차제곱합(SSE)$$

$$df : n-1=(k)+(n-k-1)$$

  • SSR은 크고 SSE는 작아야 유리
  • k - 독립변수 개수

$R^2$ - 결정계수

$$R^2=\frac{SSR}{SST}$$

  • 설명력
  • 높을수록 좋음

Example

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
> attach(Cars93)
> plot(Price,Length)
> a5=lm(Price~Length,Cars93);a5

Call:
lm(formula = Price ~ Length, data = Cars93)

Coefficients:
(Intercept) Length
-41.5246 0.3331

> anova(a5)
Analysis of Variance Table

Response: Price
Df Sum Sq Mean Sq F value Pr(>F)
Length 1 2177.3 2177.3 30.925 2.663e-07 ***
Residuals 91 6406.8 70.4
---
Signif. codes: 0***0.001**0.01*0.05 ‘.’ 0.1 ‘ ’ 1

plot

  • Length - SSR
  • Residual - SSE
  • 기각 - 영향력 있다
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
> summary(a5)

Call:
lm(formula = Price ~ Length, data = Cars93)

Residuals:
Min 1Q Median 3Q Max
-10.969 -5.708 -2.674 2.790 41.126

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -41.52458 11.00974 -3.772 0.000288 ***
Length 0.33315 0.05991 5.561 2.66e-07 ***
---
Signif. codes: 0***0.001**0.01*0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 8.391 on 91 degrees of freedom
Multiple R-squared: 0.2536, Adjusted R-squared: 0.2454
F-statistic: 30.93 on 1 and 91 DF, p-value: 2.663e-07
> 2177/(6406+2177)
[1] 0.2536409
  • Coefficient : Esitimate - $\beta_0, \beta_1$

  • lm()

  • anova()

  • summary()