R Final-term

결측값 X

read.table

1
2
setwd("/Users/zerohertz")
text=read.table('Data.txt',header=T)

Data 취사 선택

indexing - []

1
2
name[which(조건식),c('name1','name2',...)]
# which는 생략 가능
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
> Cars93[which(MPG.city>30),c('Model','Origin')]
Model Origin
31 Festiva USA
39 Metro non-USA
42 Civic non-USA
73 LeMans USA
80 Justy non-USA
83 Swift non-USA
84 Tercel non-USA
> Cars93[MPG.city>30,c('Model','Origin')]
Model Origin
31 Festiva USA
39 Metro non-USA
42 Civic non-USA
73 LeMans USA
80 Justy non-USA
83 Swift non-USA
84 Tercel non-USA
> Cars93[which(Cylinders==4&Manufacturer=='Hyundai'),c('Model','Min.Price','Max.Price')]
Model Min.Price Max.Price
44 Excel 6.8 9.2
45 Elantra 9.0 11.0
46 Scoupe 9.1 11.0
47 Sonata 12.4 15.3
> Cars93[Cylinders==4&Manufacturer=='Hyundai',c('Model','Min.Price','Max.Price')]
Model Min.Price Max.Price
44 Excel 6.8 9.2
45 Elantra 9.0 11.0
46 Scoupe 9.1 11.0
47 Sonata 12.4 15.3

subset(select=, subset=)

1
2
subset(name,select=c(name1,name2,...),subset=(조건식))
# parameter의 select or subset은 하나만 생략 가능
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
> subset(Cars93,select=Model,subset=(MPG.city>30))
Model
31 Festiva
39 Metro
42 Civic
73 LeMans
80 Justy
83 Swift
84 Tercel
> subset(Cars93,select=Model,MPG.city>30)
Model
31 Festiva
39 Metro
42 Civic
73 LeMans
80 Justy
83 Swift
84 Tercel
> subset(Cars93,Model,subset=MPG.city>30)
Model
31 Festiva
39 Metro
42 Civic
73 LeMans
80 Justy
83 Swift
84 Tercel

이산형 분포

분포 ?의 횟수 베르누이 시행 기호(X~) X p(X=x) R
베르누이 성공 O Be(p) 1번의 베르누이 시행 성공횟수 $\displaystyle{p^x\times(1-p)^{1-x}}$ binom()
이항 성공 O B(n,p) n번의 베르누이 시행 성공횟수 ${}_n \mathrm{C}_x\times p^x\times(1-p)^{n-x}$ binom()
기하 시행 O G(p) 처음 성공까지의 시행횟수 $\displaystyle{q^{x-1}\times p}$ geom()
음이항 시행 O NB(k,p) k번 성공까지의 시행횟수 $(x-1)C(k-1) \times p^{k-1} \times (1-p)^{x-k}\times p$ nbinom()
포아송 성공 O $\displaystyle{P_0(\lambda)}$ 단위(시간, 면적, …) 성공횟수 $\displaystyle{e^{-\lambda} \times \lambda^x\over x!}$ pois()
초기하 성공 X HG(N,n,D) 성공횟수 ${}_DC_x \times (N-D)C(n-x) \over {}_N C_n$ hyper()

이항분포

  • E(X)=np - 평균(성공횟수)
  • V(X)=npq

기하분포

  • 무한하게 시행시 무조건 성공(p/(1-q)=1 by 무한등비급수)
  • E(X)=1/p - 평균(시행횟수)
  • V(X)=q/(p^2)

음이항분포

  • 이항분포의 반대(시행횟수 <-> 성공횟수)
  • E(X)=k/p - 평균(시행횟수)
  • V(X)=k*q/(p^2)

포아송분포

  • n->inf, p->0 근사
  • ex) p=0.001, n=3000
    • p(X=5)=3000C5((0.001)^5)*(0.999)^2995
    • p(X=x)=(e^(-lambda)*lambda^x)/(x!)
      • lambda=np
      • p=(lambda)/n
      • 이항분포에 근사하여 대입 후 증명
  • lambda- 평균성공횟수
  • E(X)=lambda

초기하분포

  • 독립시행 X - 베르누이 시행을 따르지 않음
  • 단순 확률 구하기와 Similar
  • 변수
    • N - 전체집단 개수
    • n - 추출대상 개수
    • D - 성공집단 개수

R

mean R
이항분포 binom()
기하분포 geom()
음이항분포 nbinom()
포아송분포 pois()
초기하분포 hyper()
표본추출 - 이항 rbinom(표본수,평균,분산)
p(X=n) - 이항 dbinom(성공횟수,시행횟수,성공확률)
p(X<=n) - 이항 pbinom(성공횟수,시행횟수,성공확률)
p(X=n) - 기하 dgeom(실패횟수,성공확률)
p(X=n) - 음이항 dnbinom(실패횟수,성공횟수,성공확률)
p(X=n) - 포아송 dpois(성공횟수,lambda)
p(X<=n)- 포아송 ppois(성공횟수,lambda)
p(X=n)- 초기하 dhyper(성공횟수(x),성공표본수(D),다른표본수(N-D),추출개수(n))
t 분포 t()
F 분포 f()
정규분포 norm()
정규분포 함숫값 dnorm()
정규분포 누적 pnorm()
정규분포 x,z값(분위수) qnorm(누적확률값)
지수분포 exp()
  • r - 추출
  • d - 확률
  • p - 누적 확률
  • q - 분위수

R source

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
> ### 이산형 ###
> dbinom(1,3,0.5)
[1] 0.375
> pbinom(2,3,0.5)
[1] 0.875
> dbinom(0,3,0.5)+dbinom(1,3,0.5)+dbinom(2,3,0.5)
[1] 0.875
> dgeom(2,0.4)
[1] 0.144
> dnbinom(1,2,0.4)
[1] 0.192
> dpois(2,3)
[1] 0.2240418
> dpois(0,3)+dpois(1,3)+dpois(2,3)
[1] 0.4231901
> ppois(2,3)
[1] 0.4231901
> dhyper(2,3,2,3) # B=3, W=2 3개 추출, B=2, W=1
[1] 0.6
> ### 연속형 ###
> x=seq(-3,3,length=100)
> x
[1] -3.00000000 -2.93939394 -2.87878788 -2.81818182 -2.75757576 -2.69696970 -2.63636364 -2.57575758
...
[97] 2.81818182 2.87878788 2.93939394 3.00000000
> plot(x,dnorm(x)) # 표준정규분포 확률밀도함수
> plot(x,dnorm(x),type='l') # type = line
> x=rnorm(100000000)# 랜덤생성
> mean(x);sd(x)
[1] -7.529876e-05
[1] 1.000055
> y=rnorm(100000000,2000,10)
> mean(y);sd(y)
[1] 2000
[1] 10.00069
> hist(x)
> pnorm(0)
[1] 0.5
> pnorm(0)-pnorm(-1.96) # p(-1.96<X<0)
[1] 0.4750021
> pnorm(110,100,5)-pnorm(90,100,5) # p(90<X<110)
[1] 0.9544997
> qnorm(0.975) ############
[1] 1.959964
> qnorm(0.5,175,10)
[1] 175

범주자료

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
> summary(Cars93$AirBags)
Driver & Passenger Driver only None
16 43 34
> table(Origin,AirBags)
AirBags
Origin Driver & Passenger Driver only None
USA 9 23 16
non-USA 7 20 18
> t2=with(Cars93,table(Origin,Type));t2
Type
Origin Compact Large Midsize Small Sporty Van
USA 7 11 10 7 8 5
non-USA 9 0 12 14 6 4
> t3=xtabs(~Origin+Type,Cars93);t3
Type
Origin Compact Large Midsize Small Sporty Van
USA 7 11 10 7 8 5
non-USA 9 0 12 14 6 4
> prop.table(t2)
Type
Origin Compact Large Midsize Small Sporty Van
USA 0.0753 0.1183 0.1075 0.0753 0.0860 0.0538
non-USA 0.0968 0.0000 0.1290 0.1505 0.0645 0.0430
> margin.table(t3,1) #행
Origin
USA non-USA
48 45
> margin.table(t3,2) #열
Type
Compact Large Midsize Small Sporty Van
16 11 22 21 14 9
> prop.table(t3)
Type
Origin Compact Large Midsize Small Sporty Van
USA 0.0753 0.1183 0.1075 0.0753 0.0860 0.0538
non-USA 0.0968 0.0000 0.1290 0.1505 0.0645 0.0430
> addmargins(t3)
Type
Origin Compact Large Midsize Small Sporty Van Sum
USA 7 11 10 7 8 5 48
non-USA 9 0 12 14 6 4 45
Sum 16 11 22 21 14 9 93
> addmargins(prop.table(t3))
Type
Origin Compact Large Midsize Small Sporty Van Sum
USA 0.0753 0.1183 0.1075 0.0753 0.0860 0.0538 0.5161
non-USA 0.0968 0.0000 0.1290 0.1505 0.0645 0.0430 0.4839
Sum 0.1720 0.1183 0.2366 0.2258 0.1505 0.0968 1.0000
  • 빈도

수치자료

1
2
3
4
5
> summary(Length)
Min. 1st Qu. Median Mean 3rd Qu. Max.
141.0 174.0 183.0 183.2 192.0 219.0
> sd(Length)
[1] 14.60238
  • 평균
  • 표준편차
  • 중위수

수치자료 범주화

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
> grade=ifelse(airquality$Temp>=60,'상','하');grade
[1] "상" "상" "상" "상" "하" "상" "상" "하" "상" "상" "상" "상" "상" "상" "하" "상" "상" "하" "상"
...
[153] "상"
> air0=data.frame(airquality,grade);air0
Ozone Solar.R Wind Temp Month Day grade
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6
7 23 299 8.6 65 5 7
8 19 99 13.8 59 5 8
9 8 19 20.1 61 5 9
10 NA 194 8.6 69 5 10
...
> airquality$grade=ifelse(airquality$Temp>=60,'상','하');airquality
Ozone Solar.R Wind Temp Month Day grade
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6
7 23 299 8.6 65 5 7
8 19 99 13.8 59 5 8
9 8 19 20.1 61 5 9
10 NA 194 8.6 69 5 10
...
> x = c(80, 88, 90, 93, 95, 94, 99, 78, 65)
> cat.x = (x >= 100) + (x < 90) + (x < 80)
> cat.x
[1] 1 1 0 0 0 0 0 2 2
> cat.x1 = factor(cat.x, labels = c("A", "B", "C"))
> cat.x1 #0~79/80~89/90~
[1] B B A A A A A C C
Levels: A B C
> cat.x2 = (x <= 100) + (x < 90) + (x < 80)
> cat.x2
[1] 2 2 1 1 1 1 1 3 3
> cat.x3 = factor(cat.x2, labels = c("A", "B", "C"))
> cat.x3
[1] B B A A A A A C C
Levels: A B C
> cat.x4 = cut(x, breaks = c(0, 80, 90, 100), include.lowest = T, right = F, labels = c("C", "B", "A"))
> cat.x4
[1] B B A A A A A C C
Levels: C B A

교차분석

범주자료 2개 - 두 범주형 자료간에 상호 관련성

검정통계량

$$\chi^2=\sum_{i}\sum_{j}\frac{(O_{ij}-E_{ij})^2}{E_{ij}} \sim \chi^2_{(a-1)(b-1)}$$

  • a, b - 범주수

가설

$$H_0 : 두\ 변수\ 독립$$

기대빈도

독립이게끔 하는 빈도, 차이가 없게끔 하는 빈도 - $E_{ij}$

Example 1

$$H_0 : Origin과\ AirBags는\ 독립이다.$$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
> table(Origin,AirBags)
AirBags
Origin Driver & Passenger Driver only None
USA 9 23 16
non-USA 7 20 18
> t=xtabs(~Origin+AirBags,Cars93);t
AirBags
Origin Driver & Passenger Driver only None
USA 9 23 16
non-USA 7 20 18
> prop.table(t)
AirBags
Origin Driver & Passenger Driver only None
USA 0.09677419 0.24731183 0.17204301
non-USA 0.07526882 0.21505376 0.19354839
> addmargins(t)
AirBags
Origin Driver & Passenger Driver only None Sum
USA 9 23 16 48
non-USA 7 20 18 45
Sum 16 43 34 93
> addmargins(prop.table(t))
AirBags
Origin Driver & Passenger Driver only None Sum
USA 0.09677419 0.24731183 0.17204301 0.51612903
non-USA 0.07526882 0.21505376 0.19354839 0.48387097
Sum 0.17204301 0.46236559 0.36559140 1.00000000
> library(gmodels)
> CrossTable(Origin,AirBags,expected=T,chisq=T)


Cell Contents
|-------------------------|
| N |
| Expected N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
| N / Table Total |
| --------------- |


Total Observations in Table: 93


| AirBags
| Origin | Driver & Passenger | Driver only | None | Row Total |
| ------------- | -------------------- | -------------------- | -------------------- | -------------------- |
| USA | 9 | 23 | 16 | 48 |
| 8.258 | 22.194 | 17.548 | |
| 0.067 | 0.029 | 0.137 | |
| 0.188 | 0.479 | 0.333 | 0.516 |
| 0.562 | 0.535 | 0.471 | |
| 0.097 | 0.247 | 0.172 | |
| ------------- | -------------------- | -------------------- | -------------------- | -------------------- |
| non-USA | 7 | 20 | 18 | 45 |
| 7.742 | 20.806 | 16.452 | |
| 0.071 | 0.031 | 0.146 | |
| 0.156 | 0.444 | 0.400 | 0.484 |
| 0.438 | 0.465 | 0.529 | |
| 0.075 | 0.215 | 0.194 | |
| ------------- | -------------------- | -------------------- | -------------------- | -------------------- |
| Column Total | 16 | 43 | 34 | 93 |
| 0.172 | 0.462 | 0.366 | |
| ------------- | -------------------- | -------------------- | -------------------- | -------------------- |


Statistics for All Table Factors


Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 0.4806754 d.f. = 2 p = 0.7863623
  • $p=0.786 \geq 0.05$이므로 $H_0$ 채택 - 독립

Example 2

$$H_0 : Origin과\ Type은\ 독립이다.$$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
> CrossTable(Origin,Type,expected=T,chisq=T)


Cell Contents
|-------------------------|
| N |
| Expected N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
| N / Table Total |
| --------------- |


Total Observations in Table: 93


| Type
| Origin | Compact | Large | Midsize | Small | Sporty | Van | Row Total |
| ------------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- |
| USA | 7 | 11 | 10 | 7 | 8 | 5 | 48 |
| 8.258 | 5.677 | 11.355 | 10.839 | 7.226 | 4.645 | |
| 0.192 | 4.990 | 0.162 | 1.360 | 0.083 | 0.027 | |
| 0.146 | 0.229 | 0.208 | 0.146 | 0.167 | 0.104 | 0.516 |
| 0.438 | 1.000 | 0.455 | 0.333 | 0.571 | 0.556 | |
| 0.075 | 0.118 | 0.108 | 0.075 | 0.086 | 0.054 | |
| ------------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- |
| non-USA | 9 | 0 | 12 | 14 | 6 | 4 | 45 |
| 7.742 | 5.323 | 10.645 | 10.161 | 6.774 | 4.355 | |
| 0.204 | 5.323 | 0.172 | 1.450 | 0.088 | 0.029 | |
| 0.200 | 0.000 | 0.267 | 0.311 | 0.133 | 0.089 | 0.484 |
| 0.562 | 0.000 | 0.545 | 0.667 | 0.429 | 0.444 | |
| 0.097 | 0.000 | 0.129 | 0.151 | 0.065 | 0.043 | |
| ------------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- |
| Column Total | 16 | 11 | 22 | 21 | 14 | 9 | 93 |
| 0.172 | 0.118 | 0.237 | 0.226 | 0.151 | 0.097 | |
| ------------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- | ----------- |


Statistics for All Table Factors


Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 14.07985 d.f. = 5 p = 0.01511005



Warning message:
In chisq.test(t, correct = FALSE, ...) :
Chi-squared approximation may be incorrect
  • $p=0.01511 \leq 0.05$이므로 $H_0$ 기각 - 독립 X
  • Large 항목의 경우 기대빈도와 5~6 정도 차이가 나는 것을 볼 수 있음
  • $\frac{Column\ Total\ N \times Row\ Total\ N}{Total\ N} = Expected\ N$
  • $\frac{(N-Expected\ N)^2}{Expected\ N} = Chi-square\ contribution$
  • 검정통계량 : $\chi^2=14.08$

상관분석

수치자료 2개

검정통계량

$$T=r\sqrt{\frac{n-2}{1-r^2}}\sim t(n-2)$$

가설

$$H_0 : \rho_{xy}=0$$

상관계수

$$r_{xy}=\frac{\sum(x_i-\bar x)(y_i-\bar y)}{\sqrt{\sum(x_i-\bar x)^2\sum(y_i-\bar y)^2}}$$

Example

$$H_0 : \rho_{xy}=0$$

1
2
3
4
5
6
7
> plot(Weight,EngineSize)
> r=cor(Weight,EngineSize);r
[1] 0.8450753
> t=r*sqrt((length(Weight)-2)/(1-r^2));t
[1] 15.07818
> (1-pt(t,length(Weight)-2))*2
[1] 0
  • $p=0 \leq 0.05$이므로 $H_0$ 기각 - $\rho_{xy}\neq0$

일표본 T-검정

수치자료 1개

검정통계량

$$T=\frac{\bar{X}-\mu_0}{s/\sqrt{n}}\sim t(n-1)$$

가설

$$H_0:\mu=\mu_0$$

  • t.test()
  • 문제에 맞게 양측 단측

Example

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
> mean(Price)
[1] 19.50968
> t.test(Price,mu=19,conf.level=0.95)

One Sample t-test

data: Price
t = 0.50884, df = 92, p-value = 0.6121
alternative hypothesis: true mean is not equal to 19
95 percent confidence interval:
17.52034 21.49901
sample estimates:
mean of x
19.50968

> t.test(Price,mu=25,conf.level=0.95)

One Sample t-test

data: Price
t = -5.4814, df = 92, p-value = 3.667e-07
alternative hypothesis: true mean is not equal to 25
95 percent confidence interval:
17.52034 21.49901
sample estimates:
mean of x
19.50968
  • $\mu=19$ - 귀무가설 채택($0.6121\geq 0.05$)
  • $\mu=25$ - 귀무가설 기각($3.667\times 10^-{7}\leq 0.05$)

독립표본 T-검정

집단 2개, 수치자료 1개 - 두 집단 평균비교

검정통계량

$$\sigma_1^2=\sigma_2^2\ -\ T=\frac{(\bar X_1 - \bar X_2)-(\mu_1 - \mu_2)}{\sqrt{S_p^2(1/n_1 + 1/n_2)}} \sim t(n_1+n_2-2)$$
$$\sigma_1^2\neq\sigma_2^2\ -\ T=\frac{(\bar X_1 - \bar X_2)-(\mu_1 - \mu_2)}{\sqrt{S_1^2/n_1 + S_2^2/n_2}} \sim t(u^*)$$

  • 가중평균 : 집단의 개수가 다르면 가중치를 대입하여 평균 - $n_1 \bar x_1 + n_2 \bar x_2 \over n_1 + n_2$
  • 합동분산 $S_p^2 = \frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{(n_1-1)+(n_2-1)}$ - S는 자유도가 1
  • $u^*$는 실수

가설

$$H_0 : \mu_1-\mu_2=0$$

등분산 검정

가설

$$H_0 : \frac{\sigma_1^2}{\sigma_2^2}=1,\ \sigma_1^2=\sigma_2^2$$

  • 분산의 비는 F분포
  • 우단측 검정만 실행
  • 큰 $\sigma$를 위에

Example 1

등분산 검정
$$H_0 : \frac{\sigma_1^2}{\sigma_2^2}=1$$

1
2
3
4
5
6
7
8
9
10
11
12
> var.test(mpg~am,mtcars)

F test to compare two variances

data: mpg by am
F = 0.38656, num df = 18, denom df = 12, p-value = 0.06691
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.1243721 1.0703429
sample estimates:
ratio of variances
0.3865615
  • var.test(수치~범주,Data)
  • $p=0.06691 \geq 0.05$이므로 귀무가설 채택
  • $\sigma_1^2=\sigma_2^2$

독립표본 T-검정(등분산)
$$H_0 : \mu_1-\mu_2=0$$

1
2
3
4
5
6
7
8
9
10
11
12
> t.test(mpg~am,mtcars,var.equal=T)

Two Sample t-test

data: mpg by am
t = -4.1061, df = 30, p-value = 0.000285
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-10.84837 -3.64151
sample estimates:
mean in group 0 mean in group 1
17.14737 24.39231
  • $p=0.000285 \leq 0.05$이므로 귀무가설 기각
  • $\mu_1 \neq \mu_2$

해석

  • group 1의 평균은 24.39231, group 0의 평균은 17.14737으로 group 1의 평균이 더 크다.

Example 2

등분산 검정
$$H_0 : \frac{\sigma_1^2}{\sigma_2^2}=1$$

1
2
3
4
5
6
7
8
9
10
11
12
> var.test(Price~Origin,Cars93)

F test to compare two variances

data: Price by Origin
F = 0.47796, num df = 47, denom df = 44, p-value = 0.01387
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.2645004 0.8587304
sample estimates:
ratio of variances
0.4779637
  • $p=0.01387 \leq 0.05$이므로 귀무가설 기각
  • $\sigma_1^2 \neq \sigma_2^2$

독립표본 T-검정(이분산)
$$H_0 : \mu_1-\mu_2=0$$

1
2
3
4
5
6
7
8
9
10
11
12
> t.test(Price~Origin,Cars93,var.equal=F)

Welch Two Sample t-test

data: Price by Origin
t = -0.95449, df = 77.667, p-value = 0.3428
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-5.974255 2.102311
sample estimates:
mean in group USA mean in group non-USA
18.57292 20.50889
  • $p=0.3428 \geq 0.05$이므로 귀무가설 채택
  • $\mu_1=\mu_2$

해석

  • USAnon-USAPrice차이는 없다.

Example 3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
> var.test(Weight~Origin,Cars93)

F test to compare two variances

data: Weight by Origin
F = 0.90622, num df = 47, denom df = 44, p-value = 0.7388
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.501495 1.628160
sample estimates:
ratio of variances
0.9062231

> t.test(Weight~Origin,Cars93)

Welch Two Sample t-test

data: Weight by Origin
t = 2.1016, df = 89.825, p-value = 0.03839
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
13.82668 492.13165
sample estimates:
mean in group USA mean in group non-USA
3195.312 2942.333

해석

  • USA의 차가 Weight 즉, 무게가 non-USA의 차보다 더 나간다.

대응표본 T-검정

수치자료 2개 - 전후비교

검정통계량

$$T=\frac{\bar D - \mu_D}{S_D/\sqrt{n}} \sim t(n-1)$$

가설

$$H_0 : \mu_{before}-\mu_{after}=\mu_D=0$$

Example

$$H_0 : \mu_{before}-\mu_{after}=\mu_D=0$$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
> attach(shoes)
> t.test(A,B,paired=T)

Paired t-test

data: A and B
t = -3.3489, df = 9, p-value = 0.008539
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.6869539 -0.1330461
sample estimates:
mean of the differences
-0.41

> t.test(B,A,paired=T)

Paired t-test

data: B and A
t = 3.3489, df = 9, p-value = 0.008539
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.1330461 0.6869539
sample estimates:
mean of the differences
0.41

> D=A-B
> t.test(D,mu=0)

One Sample t-test

data: D
t = -3.3489, df = 9, p-value = 0.008539
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-0.6869539 -0.1330461
sample estimates:
mean of x
-0.41

> mean(A)
[1] 10.63
> mean(B)
[1] 11.04
  • $p=0.008539\leq0.05$이므로 귀무가설 기각
  • $\mu_A\neq \mu_B$

해석

  • 평균적으로 AB보다 0.41 작다.

일원배치 분산분석

집단 N개, 수치자료 1개 - N개 집단 평균비교($N \geq 3$)

검정통계량

$$F=\frac{S_1^2}{S_2^2}=\frac{MSB}{MSW}$$

가설

$$H_0 : \mu_1 = \mu_2 = … = \mu_k$$
$$H_1 : \mu_j(적어도\ 하나)는\ 같지\ 않다$$

분산

$$S^2=\frac{1}{n-1}\sum(x_i-\bar x)^2$$

  • 편차의 제곱합
  • 자유도로 나눔
  • 평균제곱합

$$Y_{ij}$$

  • i번째 집단 j번째 Data

$$Y_{ij}-\bar Y=(\bar Y_i-\bar Y)+(Y_{ij}-\bar Y_i)$$

$$(Y_{ij}-\bar Y)^2=(\bar Y_i-\bar Y)^2+(Y_{ij}-\bar Y_i)^2$$

$$\sum_i \sum_j (Y_{ij}-\bar Y)^2=\sum_i \sum_j (\bar Y_i-\bar Y)^2+\sum_i \sum_j (Y_{ij}-\bar Y_i)^2$$

$$총제곱합(Sum\ of\ Square\ Total)=집단간\ 제곱합(Sum\ of\ Square\ Between)+집단내\ 제곱합(Sum\ of\ Square\ Within)$$

$$df : n-1=(k-1)+(n-k)$$

  • k - 집단수

다중비교

  • 귀무가설을 기각할때 차이가 있는지 여부만 알고 어떻게 차이가 있는지 알지 못함
  • 따라서 다중비교, 하지만 분산분석과는 별개

Tukey - HSD(Honest Significant Difference) 방법

  • 가장 보수적

분산분석표 분석

  • SSB
  • SSW
  • df

Example

$$H_0 : \mu_1 = \mu_2 = … = \mu_k$$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
> a=lm(Price~DriveTrain,Cars93);a

Call:
lm(formula = Price ~ DriveTrain, data = Cars93)

Coefficients:
(Intercept) DriveTrainFront DriveTrainRear
17.63000 -0.09418 11.32000

> anova(a)
Analysis of Variance Table

Response: Price
Df Sum Sq Mean Sq F value Pr(>F)
DriveTrain 2 1722.3 861.14 11.295 4.202e-05 ***
Residuals 90 6861.7 76.24
---
Signif. codes: 0***0.001**0.01*0.05 ‘.’ 0.1 ‘ ’ 1
  • DriveTrain 집단간, Residual 집단내
  • $p=4.202 \times 10^{-5} \leq 0.05$이므로 귀무가설 기각
  • 각 집단의 평균이 차이를 보임

다중비교

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
> a1=aov(Price~DriveTrain,Cars93);a1
Call:
aov(formula = Price ~ DriveTrain, data = Cars93)

Terms:
DriveTrain Residuals
Sum of Squares 1722.286 6861.735
Deg. of Freedom 2 90

Residual standard error: 8.731638
Estimated effects may be unbalanced
> TukeyHSD(a1)
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = Price ~ DriveTrain, data = Cars93)

$DriveTrain
diff lwr upr p adj
Front-4WD -0.0941791 -7.148353 6.959995 0.9994421
Rear-4WD 11.3200000 2.931875 19.708125 0.0050886
Rear-Front 11.4141791 5.624162 17.204197 0.0000278

> aggregate(Price,by=list(DriveTrain),mean)
Group.1 x
1 4WD 17.63000
2 Front 17.53582
3 Rear 28.95000

해석

  • 후륜구동 자동차가 4륜, 전륜에 비해 비싼 가격을 가지는 경향을 보임
  • 4륜과 전륜 자동차는 비슷한 가격을 가지는 경향을 보임

회귀분석

$$Y_i(종속)=\beta_0+\beta_1x_i(독립)+\epsilon_i$$
$$\epsilon_i(오차항) \sim N(0,\sigma^2) - 확률변수$$

  • 오차항(회귀분석은 아래 가정을 따라야 함)
    • 정규성
    • 독립성
    • 등분산성
  • 독립변수 -> 종속변수 영향력? - $\beta_1$
  • $\beta_0, \beta_1$ - 모수(상수)
  • $E(Y_i)=\beta_0+\beta_1x_i$
  • $V(Y_i)=\sigma^2$

$$Y_i \sim N(\beta_0+\beta_1x_i,\sigma^2)$$

$$D=\sum_{i=1}^ne_i=\sum_{i=1}^n(Y_i-\hat{Y_i})^2=\sum_{i=1}^n(Y_i-y(x_i))^2$$

  • $e_i$ - Residual(잔차)
  • $\hat{Y_i}$ - 추정량(예측치)

검정통계량

F-검정

$$MSR=\frac{SSR}{k},\ MSE=\frac{SSE}{n-k-1}$$

$$F=\frac{MSR}{MSE}$$

T-검정

$$T=\frac{\hat{\beta_1}-\beta_1}{\sqrt{\frac{MSE}{\sum(x_i-\bar{x})^2}}} \sim t(n-2)$$

  • F는 모든 계수 검정, T는 $\beta_1$만 검정

가설

F-검정

$$H_0 : \beta_1 = 0(회귀모형\ 적합\ X)$$

T-검정

$$H_0 : \beta_0=0, T=\frac{\hat{\beta_0}-\beta_0}{\sqrt{MSE(\frac{1}{n}+\frac{\bar{x}^2}{\sum(x_i-\bar{x})^2})}}\sim t(n-2)$$
$$H_0 : \beta_1=0, T=\frac{\hat{\beta_1}-\beta_1}{\sqrt{\frac{MSE}{\sum(x_i-\bar{x})^2}}} \sim t(n-2)$$

Least squares regression

$$\frac{\partial D}{\partial \hat \beta_0}=0$$
$$\frac{\partial D}{\partial \hat \beta_1}=0$$

$\hat \beta_0,\ \hat \beta_1$의 분포

$$\hat{\beta_0}=\bar{Y}-\hat{\beta_1}\bar{x} \sim N(\beta_0,\sigma^2(\frac{1}{n}+\frac{\bar{x}^2}{\sum(x_i-\bar{x})^2})$$
$$\hat{\beta_1}=\frac{\sum(x_i-\bar{x})(Y_i-\bar{Y})}{\sum(x_i-\bar{x})^2} \sim N(\beta_1,\frac{\sigma^2}{\sum(x_i-\bar{x})^2})$$

분산분석

$$Y_{i}-\bar Y=(\hat Y_i-\bar Y)+(Y_{i}-\hat Y_i)$$

$$\sum (Y_{i}-\bar Y)^2=\sum (\hat Y_i-\bar Y)^2+\sum (Y_{i}-\hat Y_i)^2$$

$$총제곱합(SST)=회귀제곱합(SSR)+잔(오)차제곱합(SSE)$$

$$df : n-1=(k)+(n-k-1)$$

  • SSR은 크고 SSE는 작아야 유리
  • k - 독립변수 개수

$R^2$ - 결정계수

$$R^2=\frac{SSR}{SST}$$

  • 설명력
  • 높을수록 좋음

진행 순서

  1. plot(param1,param2) - 산점도 확인
  2. name=lm(param2~param1,Data) - Coefficient 확인
  3. anova(name) - F, SSR, SSE(Residual) 확인
  4. summary(name) - 결정계수, T 확인

Example 1

$$H_0 : \beta_1 = 0(회귀모형\ 적합\ X)$$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
> a=lm(Price~Length,Cars93);a

Call:
lm(formula = Price ~ Length, data = Cars93)

Coefficients:
(Intercept) Length
-41.5246 0.3331

> anova(a)
Analysis of Variance Table

Response: Price
Df Sum Sq Mean Sq F value Pr(>F)
Length 1 2177.3 2177.3 30.925 2.663e-07 ***
Residuals 91 6406.8 70.4
---
Signif. codes: 0***0.001**0.01*0.05 ‘.’ 0.1 ‘ ’ 1
> summary(a)

Call:
lm(formula = Price ~ Length, data = Cars93)

Residuals:
Min 1Q Median 3Q Max
-10.969 -5.708 -2.674 2.790 41.126

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -41.52458 11.00974 -3.772 0.000288 ***
Length 0.33315 0.05991 5.561 2.66e-07 ***
---
Signif. codes: 0***0.001**0.01*0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 8.391 on 91 degrees of freedom
Multiple R-squared: 0.2536, Adjusted R-squared: 0.2454
F-statistic: 30.93 on 1 and 91 DF, p-value: 2.663e-07

> 2177/(6406+2177)
[1] 0.2536409
  • Length - SSR
  • Residual - SSE
  • $2.663 \times 10^{-7} \leq 0.05$이므로 귀무가설 기각
  • $\beta_1 \neq 0$
  • LengthF value를 제곱하면 t vlue
  • 약 25% 설명

Example 2

$$H_0 : \beta_1 = 0(회귀모형\ 적합\ X)$$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
> plot(Price,Weight)
> a=lm(Weight~Price,Cars93);a

Call:
lm(formula = Weight ~ Price, data = Cars93)

Coefficients:
(Intercept) Price
2301.82 39.52

> anova(a)
Analysis of Variance Table

Response: Weight
Df Sum Sq Mean Sq F value Pr(>F)
Price 1 13408751 13408751 65.584 2.395e-12 ***
Residuals 91 18605215 204453
---
Signif. codes: 0***0.001**0.01*0.05 ‘.’ 0.1 ‘ ’ 1
> summary(a)

Call:
lm(formula = Weight ~ Price, data = Cars93)

Residuals:
Min 1Q Median 3Q Max
-1223.29 -304.86 -56.05 238.62 1067.10

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2301.82 106.13 21.688 < 2e-16 ***
Price 39.52 4.88 8.098 2.4e-12 ***
---
Signif. codes: 0***0.001**0.01*0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 452.2 on 91 degrees of freedom
Multiple R-squared: 0.4188, Adjusted R-squared: 0.4125
F-statistic: 65.58 on 1 and 91 DF, p-value: 2.395e-12

> abline(a=2301,b=39.5,col='Red')
  • Price - SSR
  • Residual - SSE
  • $2.395 \times 10^{-12} \leq 0.05$이므로 귀무가설 기각
  • $\beta_1 \neq 0$
  • 약 42% 설명
plot-1

Example 3

$$H_0 : \beta_1 = 0(회귀모형\ 적합\ X)$$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
> plot(Price,Max.Price)
> a=lm(Max.Price~Price,Cars93);a

Call:
lm(formula = Max.Price ~ Price, data = Cars93)

Coefficients:
(Intercept) Price
0.03048 1.12090

> anova(a)
Analysis of Variance Table

Response: Max.Price
Df Sum Sq Mean Sq F value Pr(>F)
Price 1 10785.2 10785.2 2402.1 < 2.2e-16 ***
Residuals 91 408.6 4.5
---
Signif. codes: 0***0.001**0.01*0.05 ‘.’ 0.1 ‘ ’ 1
> summary(a)

Call:
lm(formula = Max.Price ~ Price, data = Cars93)

Residuals:
Min 1Q Median 3Q Max
-3.9598 -1.1627 -0.1561 0.8119 10.5857

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.03048 0.49736 0.061 0.951
Price 1.12090 0.02287 49.012 <2e-16 ***
---
Signif. codes: 0***0.001**0.01*0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.119 on 91 degrees of freedom
Multiple R-squared: 0.9635, Adjusted R-squared: 0.9631
F-statistic: 2402 on 1 and 91 DF, p-value: < 2.2e-16

> abline(a,col='red')
  • Price - SSR
  • Residual - SSE
  • $2.2 \times 10^{-16} \leq 0.05$이므로 귀무가설 기각
  • $\beta_1 \neq 0$
  • 약 96% 설명
plot-2

Finale

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
go=function(a){
if(a==1){
print('gyocha, label 2')
print('H_0 : var independent')
print('gumjung : chi^2=sumsum(O-E)^2/E~chi^2(a-1)(b-1)')
print('library(gmodels)')
print('CrossTable(var1,var2,expected=T,chisq=T)')
}else if(a==2){
print('sanggwan, num 2')
print('H_0 : rho_xy=0')
print('r=sum(xi-xbar)(yi-ybar)/sqrt(sum(xi-xbar)^2*sum(yi-ybar)^2)')
print('gumjung : T=r*sqrt((length(var1)-2)/(1-r^2))~t(n-2)')
print('r=cor(var1,var2)')
print('t=r*sqrt((length(var1)-2)/(1-r^2))')
print('(1-pt(t,length(var1)-2))*2')
}else if(a==3){
print('1pyobon T-gumjung, num 1')
print('H_0 : mu=mu_0')
print('gumjung : T=(Xbar-mu0)/(S/sqrt(n))~t(n-1)')
print('t.test(var1,mu=mu_0)')
}else if(a==4){
print('dokrib T-gumjung, num 1(label 2)')
print('H_0 : mu_1-mu_2=0')
print('gumjung : daeeung, Normalize - eq~t(n1+n2-2), neq~t(u*)')
print('H_0 : sigma_1^2/sigma_2^2=1')
print('var.test(num~lab,Data)')
print('t.test(num~lab,Data,var,equal=T or F)')
}else if(a==5){
print('daeeung T-gumjung, num 2(be af)')
print('H_0 : mu_before-mu_after=mu_D=0')
print('gumjung : T=(Dbar-muD)/(S_D/sqrt(n))~t(n-1)')
print('t.test(var1,var2,paired=T)')
print('D=var1-var2')
print('t.test(D,mu=0)')
}else if(a==6){
print('ilwonbatch bunsanbunsuck, num 1(label 3up)')
print('H_0=mu_1=mu_2=...=mu_k')
print('gumjung : F=S1^2/S2^2=MSB/MSW')
print('Yij-Ybar=Yibar-Ybar+Yij-Yibar')
print('SST=SSB+SSW')
print('n-1=k-1+n-k')
print('name1=lm(num~lab,Data)')
print('anova(name1)')
print('name2=aov(num~lab,Data)')
print('TukeyHSD(name2)')
print('aggregate(num,by=list(lab),mean)')
}else if(a==7){
print('reg')
print('H_0 : hatbeta1=0')
print('gumjung : F=MSR/MSE, T=(beta1hat-beta1)/sqrt(MSE/sum(xi-xbar)^2)~t(n-2)')
print('Yi-Ybar=Yihat-Ybar+Yi-Yihat')
print('SST=SSR+SSE')
print('n-1=k+(n-k-1)')
print('R^2=SSR/SST')
print('plot(var1,var2)')
print('name=lm(num~lab,Data)')
print('anova(name)')
print('summary(name)')
}else if(a==8){
print('Data chisa')
print('name[which(jogun),c()]')
print('subset(name,select=(),subset=c())')
}else if(a==9){
print('r-chuchul,d-hwakrule,p-nujuk,q-bunwesu')
print('binom,geom,nbinom,pois,hyper')
print('dhyper(2,3,2,3) # B=3, W=2, 3gae chuchul, B=2, W=1')
}else if(a==10){
print('table,with,xtabs,prop.table,margin.table,addmargins')
print('cut(x,breaks=c(),include.lowest=,right=,labels=c())')
print('factor(x,labels=c())')
}else if(a==11){
print('beta0hat~N(beta0,sigma^2(1/n+xbar^2/sum(xi-xbar)))')
print('beta1hat~N(beta1,sigma^2/sum(xi-xbar))')
print('확률변수 - 표본공간의 각 사건을 수치로 대응시켜주는 함수')
}
}