Theorical Background

  • Types of Machine Learning
    • Supervised Learning
    • Unsupervised Learning
    • Reinforcement Learning
    • Self Learning
    • Feature Learning
    • Sparse Dictionary Learning
    • Anomaly Detection
    • Association Rules
  • Two Supervised Learning Methods
    • Regression
    • Classification
  • Empirical Risk Minimization
    • Loss and Risk Functions
    • Algorithms
Read more »

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import time
from selenium import webdriver
import telegram

def updateStatus():
browser.find_element_by_xpath('//*[@id="paramInvcNo"]').send_keys(num)
browser.find_element_by_xpath('//*[@id="btnSubmit"]').click()
status = browser.find_element_by_xpath('//*[@id="statusDetail"]')
return status.text

options = webdriver.ChromeOptions()
options.add_argument('headless')
options.add_argument('window-size=1920x1080')
options.add_argument("disable-gpu")
browser = webdriver.Chrome("Location of Chrome Driver", options = options)
browser.implicitly_wait(5)
url = 'https://www.cjlogistics.com/ko/tool/parcel/tracking'
browser.get(url)
myToken = 'TelegramToken'
bot = telegram.Bot(token = myToken)
chat_id = ID#bot.getUpdates()[-1].message.chat.id #가장 최근에 온 메세지의 chat id를 가져옵니다
num = 운송장 번호
statusArr = ["", ""]

i = 0
while True:
status = updateStatus()
statusArr[i%2] = str(status)
if statusArr[0] != statusArr[1]:
bot.sendMessage(chat_id=chat_id, text=statusArr[i%2])
print('Different')
browser.refresh()
time.sleep(1)
i = i+1

Initialize

0으로 초기화

init_zero.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import numpy as np

a = np.zeros(5)
b = np.zeros((5,4))

print('a = ', a)
print('********************')
print('b = ', b)
print('********************')

print('b.shape = ', b.shape)
print('********************')
print('b.ndim', b.ndim) #len(b.shape)
print('********************')
print('b.size = ', b.size)
Read more »

MATLAB Coder

MATLAB Coder를 통해 C 또는 C++ 코드를 생성할 수 있다.

  • Export types
    • 소스 코드
    • 정적 라이브러리
    • 동적 라이브러리
  • Prerequisites for Deep Learning
    • Intel CPUs
      • Intel Math Kernel Library for Deep Neural Networks (Intel MKL-DNN)
    • ARM CPUs
      • ARM Compute Library

matlab-coder

Read more »