문제

케빈 베이컨의 6단계 법칙에 의하면 지구에 있는 모든 사람들은 최대 6단계 이내에서 서로 아는 사람으로 연결될 수 있다. 케빈 베이컨 게임은 임의의 두 사람이 최소 몇 단계 만에 이어질 수 있는지 계산하는 게임이다.
예를 들면, 전혀 상관없을 것 같은 인하대학교의 이강호와 서강대학교의 민세희는 몇 단계만에 이어질 수 있을까?
천민호는 이강호와 같은 학교에 다니는 사이이다. 천민호와 최백준은 Baekjoon Online Judge를 통해 알게 되었다. 최백준과 김선영은 같이 Startlink를 창업했다. 김선영과 김도현은 같은 학교 동아리 소속이다. 김도현과 민세희는 같은 학교에 다니는 사이로 서로 알고 있다. 즉, 이강호-천민호-최백준-김선영-김도현-민세희 와 같이 5단계만 거치면 된다.
케빈 베이컨은 미국 헐리우드 영화배우들 끼리 케빈 베이컨 게임을 했을때 나오는 단계의 총 합이 가장 적은 사람이라고 한다.
오늘은 Baekjoon Online Judge의 유저 중에서 케빈 베이컨의 수가 가장 작은 사람을 찾으려고 한다. 케빈 베이컨 수는 모든 사람과 케빈 베이컨 게임을 했을 때, 나오는 단계의 합이다.
예를 들어, BOJ의 유저가 5명이고, 1과 3, 1과 4, 2와 3, 3과 4, 4와 5가 친구인 경우를 생각해보자.
1은 2까지 3을 통해 2단계 만에, 3까지 1단계, 4까지 1단계, 5까지 4를 통해서 2단계 만에 알 수 있다. 따라서, 케빈 베이컨의 수는 2+1+1+2 = 6이다.
2는 1까지 3을 통해서 2단계 만에, 3까지 1단계 만에, 4까지 3을 통해서 2단계 만에, 5까지 3과 4를 통해서 3단계 만에 알 수 있다. 따라서, 케빈 베이컨의 수는 2+1+2+3 = 8이다.
3은 1까지 1단계, 2까지 1단계, 4까지 1단계, 5까지 4를 통해 2단계 만에 알 수 있다. 따라서, 케빈 베이컨의 수는 1+1+1+2 = 5이다.
4는 1까지 1단계, 2까지 3을 통해 2단계, 3까지 1단계, 5까지 1단계 만에 알 수 있다. 4의 케빈 베이컨의 수는 1+2+1+1 = 5가 된다.
마지막으로 5는 1까지 4를 통해 2단계, 2까지 4와 3을 통해 3단계, 3까지 4를 통해 2단계, 4까지 1단계 만에 알 수 있다. 5의 케빈 베이컨의 수는 2+3+2+1 = 8이다.
5명의 유저 중에서 케빈 베이컨의 수가 가장 작은 사람은 3과 4이다.
BOJ 유저의 수와 친구 관계가 입력으로 주어졌을 때, 케빈 베이컨의 수가 가장 작은 사람을 구하는 프로그램을 작성하시오.

입력

첫째 줄에 유저의 수 N (2 ≤ N ≤ 100)과 친구 관계의 수 M (1 ≤ M ≤ 5,000)이 주어진다. 둘째 줄부터 M개의 줄에는 친구 관계가 주어진다. 친구 관계는 A와 B로 이루어져 있으며, A와 B가 친구라는 뜻이다. A와 B가 친구이면, B와 A도 친구이며, A와 B가 같은 경우는 없다. 친구 관계는 중복되어 들어올 수도 있으며, 친구가 한 명도 없는 사람은 없다. 또, 모든 사람은 친구 관계로 연결되어져 있다. 사람의 번호는 1부터 N까지이며, 두 사람이 같은 번호를 갖는 경우는 없다.

출력

첫째 줄에 BOJ의 유저 중에서 케빈 베이컨의 수가 가장 작은 사람을 출력한다. 그런 사람이 여러 명일 경우에는 번호가 가장 작은 사람을 출력한다.

Read more »

문제

스타트링크에서 판매하는 어린이용 장난감 중에서 가장 인기가 많은 제품은 구슬 탈출이다. 구슬 탈출은 직사각형 보드에 빨간 구슬과 파란 구슬을 하나씩 넣은 다음, 빨간 구슬을 구멍을 통해 빼내는 게임이다.
보드의 세로 크기는 N, 가로 크기는 M이고, 편의상 1×1크기의 칸으로 나누어져 있다. 가장 바깥 행과 열은 모두 막혀져 있고, 보드에는 구멍이 하나 있다. 빨간 구슬과 파란 구슬의 크기는 보드에서 1×1크기의 칸을 가득 채우는 사이즈이고, 각각 하나씩 들어가 있다. 게임의 목표는 빨간 구슬을 구멍을 통해서 빼내는 것이다. 이때, 파란 구슬이 구멍에 들어가면 안 된다.
이때, 구슬을 손으로 건드릴 수는 없고, 중력을 이용해서 이리 저리 굴려야 한다. 왼쪽으로 기울이기, 오른쪽으로 기울이기, 위쪽으로 기울이기, 아래쪽으로 기울이기와 같은 네 가지 동작이 가능하다.
각각의 동작에서 공은 동시에 움직인다. 빨간 구슬이 구멍에 빠지면 성공이지만, 파란 구슬이 구멍에 빠지면 실패이다. 빨간 구슬과 파란 구슬이 동시에 구멍에 빠져도 실패이다. 빨간 구슬과 파란 구슬은 동시에 같은 칸에 있을 수 없다. 또, 빨간 구슬과 파란 구슬의 크기는 한 칸을 모두 차지한다. 기울이는 동작을 그만하는 것은 더 이상 구슬이 움직이지 않을 때 까지이다.
보드의 상태가 주어졌을 때, 최소 몇 번 만에 빨간 구슬을 구멍을 통해 빼낼 수 있는지 구하는 프로그램을 작성하시오.

입력

첫 번째 줄에는 보드의 세로, 가로 크기를 의미하는 두 정수 N, M (3 ≤ N, M ≤ 10)이 주어진다. 다음 N개의 줄에 보드의 모양을 나타내는 길이 M의 문자열이 주어진다. 이 문자열은 ‘.’, ‘#’, ‘O’, ‘R’, ‘B’ 로 이루어져 있다. ‘.’은 빈 칸을 의미하고, ‘#’은 공이 이동할 수 없는 장애물 또는 벽을 의미하며, ‘O’는 구멍의 위치를 의미한다. ‘R’은 빨간 구슬의 위치, ‘B’는 파란 구슬의 위치이다.
입력되는 모든 보드의 가장자리에는 모두 ‘#’이 있다. 구멍의 개수는 한 개 이며, 빨간 구슬과 파란 구슬은 항상 1개가 주어진다.

출력

최소 몇 번 만에 빨간 구슬을 구멍을 통해 빼낼 수 있는지 출력한다. 만약, 10번 이하로 움직여서 빨간 구슬을 구멍을 통해 빼낼 수 없으면 -1을 출력한다.

Read more »

문제

재난방재청에서는 많은 비가 내리는 장마철에 대비해서 다음과 같은 일을 계획하고 있다. 먼저 어떤 지역의 높이 정보를 파악한다. 그 다음에 그 지역에 많은 비가 내렸을 때 물에 잠기지 않는 안전한 영역이 최대로 몇 개가 만들어 지는 지를 조사하려고 한다. 이때, 문제를 간단하게 하기 위하여, 장마철에 내리는 비의 양에 따라 일정한 높이 이하의 모든 지점은 물에 잠긴다고 가정한다.
어떤 지역의 높이 정보는 행과 열의 크기가 각각 N인 2차원 배열 형태로 주어지며 배열의 각 원소는 해당 지점의 높이를 표시하는 자연수이다.
어떤 지역의 높이 정보가 주어졌을 때, 장마철에 물에 잠기지 않는 안전한 영역의 최대 개수를 계산하는 프로그램을 작성하시오.

입력

첫째 줄에는 어떤 지역을 나타내는 2차원 배열의 행과 열의 개수를 나타내는 수 N이 입력된다. N은 2 이상 100 이하의 정수이다. 둘째 줄부터 N개의 각 줄에는 2차원 배열의 첫 번째 행부터 N번째 행까지 순서대로 한 행씩 높이 정보가 입력된다. 각 줄에는 각 행의 첫 번째 열부터 N번째 열까지 N개의 높이 정보를 나타내는 자연수가 빈 칸을 사이에 두고 입력된다. 높이는 1이상 100 이하의 정수이다.

출력

첫째 줄에 장마철에 물에 잠기지 않는 안전한 영역의 최대 개수를 출력한다.

Read more »

문제

바로 어제 최백준 조교가 방 열쇠를 주머니에 넣은 채 깜빡하고 서울로 가 버리는 황당한 상황에 직면한 조교들은, 702호에 새로운 보안 시스템을 설치하기로 하였다. 이 보안 시스템은 열쇠가 아닌 암호로 동작하게 되어 있는 시스템이다.
암호는 서로 다른 L개의 알파벳 소문자들로 구성되며 최소 한 개의 모음(a, e, i, o, u)과 최소 두 개의 자음으로 구성되어 있다고 알려져 있다. 또한 정렬된 문자열을 선호하는 조교들의 성향으로 미루어 보아 암호를 이루는 알파벳이 암호에서 증가하는 순서로 배열되었을 것이라고 추측된다. 즉, abc는 가능성이 있는 암호이지만 bac는 그렇지 않다.
새 보안 시스템에서 조교들이 암호로 사용했을 법한 문자의 종류는 C가지가 있다고 한다. 이 알파벳을 입수한 민식, 영식 형제는 조교들의 방에 침투하기 위해 암호를 추측해 보려고 한다. C개의 문자들이 모두 주어졌을 때, 가능성 있는 암호들을 모두 구하는 프로그램을 작성하시오.

입력

첫째 줄에 두 정수 L, C가 주어진다. (3 ≤ L ≤ C ≤ 15) 다음 줄에는 C개의 문자들이 공백으로 구분되어 주어진다. 주어지는 문자들은 알파벳 소문자이며, 중복되는 것은 없다.

출력

각 줄에 하나씩, 사전식으로 가능성 있는 암호를 모두 출력한다.

Read more »

문제

크기가 N×N인 도시가 있다. 도시는 1×1크기의 칸으로 나누어져 있다. 도시의 각 칸은 빈 칸, 치킨집, 집 중 하나이다. 도시의 칸은 (r, c)와 같은 형태로 나타내고, r행 c열 또는 위에서부터 r번째 칸, 왼쪽에서부터 c번째 칸을 의미한다. r과 c는 1부터 시작한다.
이 도시에 사는 사람들은 치킨을 매우 좋아한다. 따라서, 사람들은 “치킨 거리”라는 말을 주로 사용한다. 치킨 거리는 집과 가장 가까운 치킨집 사이의 거리이다. 즉, 치킨 거리는 집을 기준으로 정해지며, 각각의 집은 치킨 거리를 가지고 있다. 도시의 치킨 거리는 모든 집의 치킨 거리의 합이다.
임의의 두 칸 (r1, c1)과 (r2, c2) 사이의 거리는 |r1-r2| + |c1-c2|로 구한다.
도시에 있는 치킨집 중에서 최대 M개를 고르고, 나머지 치킨집은 모두 폐업시켜야 한다. 어떻게 고르면, 도시의 치킨 거리가 가장 작게 될지 구하는 프로그램을 작성하시오.

입력

첫째 줄에 N(2 ≤ N ≤ 50)과 M(1 ≤ M ≤ 13)이 주어진다.
둘째 줄부터 N개의 줄에는 도시의 정보가 주어진다.
도시의 정보는 0, 1, 2로 이루어져 있고, 0은 빈 칸, 1은 집, 2는 치킨집을 의미한다. 집의 개수는 2N개를 넘지 않으며, 적어도 1개는 존재한다. 치킨집의 개수는 M보다 크거나 같고, 13보다 작거나 같다.

출력

첫째 줄에 폐업시키지 않을 치킨집을 최대 M개를 골랐을 때, 도시의 치킨 거리의 최솟값을 출력한다.

Read more »