MathJax

Reference
Detection


$$을 이용하여 수식 표현

1
2
3
4
5
> $f(x)=x^2$

> $$
> f(x)=x^2
> $$

$f(x)=x^2$

$$
f(x)=x^2
$$


$\pi$

1
> $$\pi$$

$$\pi$$


분수

1
2
3
4
5
> $$\frac{2}{3}$$

> $2\over3$

> $\displaystyle{2\over3}$

$$\frac{2}{3}$$

$2\over3$

$\displaystyle{2\over3}$


sqrt

1
2
3
4
5
> $\sqrt{a^2}$

> $$\sqrt{abc}$$

> $$\sqrt[n]{x}$$

$\sqrt{a^2}$

$$\sqrt{abc}$$

$$\sqrt[n]{x}$$


exp

1
2
3
> ${\frac{e^x-1}{2x}}$

> $${\frac{e^x-1}{2x}}$$

${\frac{e^x-1}{2x}}$

$${\frac{e^x-1}{2x}}$$


log

1
> $$\log_{2}x$$

$$\log_{2}x$$


Sigma

1
2
3
> $\sum_{i=0}^{\infty} i^2$

> $$\sum_{i=0}^{\infty} i^2$$

$\sum_{i=0}^{\infty} i^2$

$$\sum_{i=0}^{\infty} i^2$$


lim

1
2
3
4
5
$\lim_{x\to 0}$

> $$
> \lim_{x\to 0}
> $$

$\lim_{x\to 0}$

$$
\lim_{x\to 0}
$$


Integral

1
> $$\int_{1}^{\infty} i^2di$$

$$\int_{1}^{\infty} i^2di$$


Combination

1
> $${}_n \mathrm{C}_k$$

$${}_n \mathrm{C}_k$$


Matrix

1
2
3
4
5
6
7
8
9
10
11
12
13
14
> $$\begin{pmatrix} a & b \\\ c & d \end{pmatrix}$$

> $$\begin{bmatrix} a & b \\\ c & d \end{bmatrix}$$

> $$\begin{vmatrix} a & b \\\ c & d \end{vmatrix}$$

> $$
\left( \begin{array}{}
a_{11} & a_{12} & \ldots & a_{1n} \\\\
a_{21} & a_{22} & \ldots & a_{2n} \\\\
\vdots & \vdots & \ddots & \vdots \\\\
a_{m1} & a_{m2} & \ldots & a_{mn} \\\\
\end{array} \right)
$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

$$
\left( \begin{array}{}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \ldots & a_{mn} \\
\end{array} \right)
$$


Partial difference

1
2
3
> $$\partial{s}\over\partial{t}$$

> $$\dot{\alpha}=\frac{\partial{\alpha}}{\partial{t}}$$

$$\partial{s}\over\partial{t}$$

$$\dot{\alpha}=\frac{\partial{\alpha}}{\partial{t}}$$


mathrm

1
2
3
4
> $$
test \\\\
\mathrm{test}
$$

$$
test \\
\mathrm{test}
$$


Vector

1
> $$\boldsymbol{x}$$

$$\boldsymbol{x}$$