Machine Learning

Theorical Background

  • Types of Machine Learning
    • Supervised Learning
    • Unsupervised Learning
    • Reinforcement Learning
    • Self Learning
    • Feature Learning
    • Sparse Dictionary Learning
    • Anomaly Detection
    • Association Rules
  • Two Supervised Learning Methods
    • Regression
    • Classification
  • Empirical Risk Minimization
    • Loss and Risk Functions
    • Algorithms

Supervised Learning

A problem of inferring, estimating or learning a function $f$ for explaining $y$ based on $f(x)$

  • $y\in \mathcal{Y}$: Output (Dependent, Response Variable or Label)
  • $x\in \mathcal{X}$: Input (Independent, Predictive Variable of Feature)
  • $f\in \mathcal{F}$: $\mathcal{X}\rightarrow \mathcal{Y}$: Model (Regression Function or Hypothesis, Machine)

c.f., Unsupervised Learning

Regression & Classification

  • Regression
    • $\mathcal{Y}$: Infinite and Ordered ($\mathcal{Y}=\mathbb{R},\mathbb{R}^+,\ \mathbb{N}\cup\lbrace0\rbrace,\ …$)
    • Linear Regression: $\mathcal{Y}=\mathbb{R}$
    • Poisson Regression: $\mathcal{Y}=\mathbb{N}\cup\lbrace0\rbrace$
  • Classification
    • $\mathcal{Y}$: Finite and Unordered ($\mathcal{Y}=\lbrace0,\ 1\rbrace,\ \lbrace-1,\ 1\rbrace,\ \lbrace1,\ …,\ k\rbrace,\ …$)
    • Logistic Regression: $\mathcal{Y}=\lbrace0,\ 1\rbrace$
    • Support Vector Machine: $\mathcal{Y}=\lbrace-1,\ 1\rbrace$
    • Multinomial Regression: $\mathcal{Y}=\lbrace1,\ …,\ k\rbrace$
  • Prediction Based on $x$
    • Regression: $y_x=f(x)$
    • Classification: $y_x=\phi(x)$
      • $\phi(x)$: Classifier as a Function of $f(x)$
      • e.g., $\phi(x)=sign(f(x))$

Loss, Risk and Empirical Risk Minimization

  • Loss (Cost) Function: $L(y,\ f(x))$
    • It measures loss or cost for the use of $f$
    • Regression: $y\in \mathbb{R}$
      • Square: $(y-f(x))^2$
      • Quantile: $\rho_\tau(y-f(x)),\ 0<\tau<1$
      • Huber: $H_\delta(y-f(x)),\ \delta>0$
    • Classification: $y\in {-1,\ 1}$
      • Zero-One: $I[y\neq\phi]=I[yf(x)<0]$
      • Logistic: $log\lbrace1+exp(-yf(x))\rbrace$
      • Exponential: $exp(-yf(x))$
      • Hinge: $\max\lbrace0,\ 1-yf(x)\rbrace$
      • $\psi$: $I[yf(x)\leq0]+\max\lbrace0,\ 1-yf(x)\rbrace I[yf(x)>0]$
  • Risk Function: $R(f)=E_{(y,\ x)}L(y,\ f(x))$
    • Long-Term average of losses or costs
      • Square Loss: $E(y-f(x))^2$
      • Zero-One Loss: $EI[y\neq \phi(x)]=P[y\neq \phi(x)]$
      • Condition Risk: $R(f)=E_{y|x}[L(y,\ f(x))|x]$
  • Learning $f\in\mathcal{F}$
    • Learning (Estimating, Training) an optimal
      $f\in\mathcal{F}$ or $R(f)=E_x\lbrace E_{y|x}L(y,\ f(x))|x\rbrace\geq R(\hat f),\ \forall f\in\mathcal{F}$
    • Example)
      • Square loss with $f(x)=x^T\beta$
        • $\hat\beta=E(xx^T)^{-1}E(xy)$
      • Zero-one loss with $\phi(x)$
        • $\hat\phi(x)=arg\max_kP(y=k|x)$
          • $\hat\phi$: Bayes Classifier
          • $R(\hat\phi)$: Bayes Risk
  • Empirical Risk Minimization:
    $\hat f=arg\min_{f\in \mathcal{F}}R_n(f)$
  • Empirical Risk Function:
    $R_n(f)=\Sigma^n_{i=1}L(y_i,\ f(x_i))/n$
    • Training Sample ($y_i,\ x_i$), $i\leq n$:
      Independent samples / observations of $(y,\ x)$
    • Linear Regression with Square Loss:
      $\hat \beta =arg\min_\beta\Sigma^n_{i=1}(y_i-x^T_i\beta)^2/n$
    • Logistic Regression with Logistic Loss:
      $\hat\beta=arg\min_\beta\Sigma^n_{i=1}\lbrace-y_ix^T_i\beta+log(1+exp(x^T_i\beta))\rbrace/n$

Iterative Algorithms

  • Univariate Function Minimization
    • Iterative Grid Search Algorithm
    • Golden Section Algorithm
  • Multivariate Function Minimization
    • Coordinate Descent Algorithm
    • Gradient Descent Algorithm

Univariate Function Minimization

  • Problem: find $x^*=arg\min_{x\in[a,\ b]}f(x)$
  • Iterative Algorithm: for $n=1,\ 2,\ …$
    • $x^*\in[a_{n+1},\ b_{n+1}]\subset[a_n,\ b_n]$
  • (Lemma) $f$: convex on $[a_n,\ b_n]$
    • $
      \begin{equation}
      \left.
      \begin{gathered}x^*\in[a_n,\ b_n]\newline \exists_C\in[a_{n+1},\ b_{n+1}]\subset[a_n,\ n_n]\newline s.t.\ \ f(a_{n+1})>f(c)<f(b_{n+1})
      \end{gathered}
      \right\rbrace\rightarrow x^\ast [a_{n+1},\ b_{n+1}] \notag
      \end{equation}
      $
  • Non-Iterative Grid Search Alhorithm: $x^*\approx arg\min_{z\in\lbrace z_k=a+k(b-a)/m|k=0,\ …,\ m\rbrace}f(z)$
  • Iterative Grid Search Algorithm: for $n=1,\ 2,\ …$
    • $
      \begin{equation}
      \left\lbrace
      \begin{gathered}
      a_{n+1}=a_n+(k_n-1)(b_n-a_n)/m \newline
      b_{n+1}=a_n+(k_n+1)(b_n-a_n)/m
      \end{gathered}
      \right. \notag
      \end{equation}
      $
    • $k_n=arg\min_{k\in\lbrace0,\ …,\ m\rbrace}f(a_n+k(b_n-a_n)/m)$

Golden Section Algorithm

  • Golden Section Algorithm: for $n=1,\ 2,\ …$
    • Two inner points
      • $
        \begin{equation}
        \left.
        \begin{gathered}
        c_n=\gamma a_n+(1-\gamma)b_n \newline
        d_n=\gamma b_n+(1-\gamma)a_n
        \end{gathered}
        \right. \notag
        \end{equation}
        $
      • Golden Ratio: $\gamma=(\sqrt{5}-1)/2\approx0.618034$
      • $[c_n,\ d_n]\subset[a_n,\ b_n]$
    • Update Rule
      • $
        \begin{equation}
        \left.
        \begin{gathered}
        f(c_n)>f(d_n)\rightarrow[a_{n+1},\ b_{n+1}]=[c_n,\ b_n] \newline
        f(c_n)<f(d_n)\rightarrow[a_{n+1},\ b_{n+1}]=[a_n,\ d_n]
        \end{gathered}
        \right. \notag
        \end{equation}
        $

Multivariate Function Minimization

  • Problem: $x^*=arg\min_{x\in\mathbb{R}^p}f(x)$
  • Iterative Algorithm: for $n=1,\ 2,\ …$
    • $x_{n+1}=x_n+\alpha_nd_n,\ \alpha_n>0,\ f(x_{n+1})<f(x_n)$
    • $\alpha_n\in\mathbb{R}$: Step Size or Learning Rate
    • $d_n\in\mathbb{R}^p$: Descent Direction Vector
  • How to find $\alpha_n$ and $d_n$?
    1. Find a descent direction $d_n$
    2. Find a step size $\alpha_n$
      • $a_n=arg\min_{t>0}g_n(t),\ g_n(t)=f(x_n+td_n)$

Descent Condtion for Direction Vector

  • Direction Opposite to Current Gradient
    • Let $x_\alpha=x+\alpha d$, then by the first order Taylor’s expansion around $x$, we have $f(x_\alpha)$
      • $\begin{equation}\begin{aligned}f(x_\alpha)&=f(x)+\nabla f(x)^T(x_\alpha-x)+o(||x_\alpha-x||)\newline &=f(x)+\alpha\nabla f(x)^Td+o(\alpha||d||)\newline &=f(x)+\alpha\nabla f(x)^Td+o(\alpha)\end{aligned}\notag\end{equation}$
      • $\nabla f(x)=\partial f(x)/\partial x_j,\ j\leq p$: Gradient vector of $f$ at $x$
    • (Descent Condition) So we have, $f(x_\alpha)-f(x)<\alpha\nabla f(x)^Td<0$, for all sufficiently small $\alpha>0$, if $\nabla f(x)^Td<0$

Gradient Descent Algorithm

  • General Form with Negative Gradient Direction
    • $x_{n+1}=x_n+\alpha_nd_n=x_n-\alpha_nD_n\nabla f(x_n)$
      • $D_n$: Strictly Positive Definite Matrix
    • $\nabla f(x_n)^TD_n\nabla f(x_n)>0$
  • Various Directions Vectors
    • Steepest Descent: $D_n=I_p\rightarrow x_{n+1}=x_n-\alpha_n\nabla f(x_n)$
    • Newton-Raphson: $D_n=\nabla^2f(x_n)^{-1},\ \alpha_n=1$
    • Modified Newton’s Method: $D_n=\nabla^2f(x_0)$ for some $x_0$
    • Diagonally Scaled Steepest Descent: $D_n=[diag(\nabla^2f(x_n))]^{-1}$

Step Size of Gradient Descent Algorithm

  • Limited Minimization Rule
    • $f(x_n+\alpha_nd_n)=\min_{\alpha\in[0,\ s]}f(x_n+\alpha d_n)$, for some $s>0$
  • Successive Step Size Reduction (Armijo Rule, Armijo [1996])
    • Find the first integer $m\geq 0$
      that satisfies the stopping rule $f(x_n+r^msd_n)-f(x_n)\leq\sigma r^ms\nabla f(x_n)^Td_n$,
      for some constant $s>0,\ 0<r<1$ and $0<\sigma<1$
    • Practical Choice: Try $\alpha_n=1,\ 1/2,\ 1/4,\ …$
  • Deterministic Step Size: Small Constant (0.1, 0.01, 0.001)
  • A Sequence: Square summable but not summable ($\propto1/n$), nonsummable diminishing ($\propto1/\sqrt{n}$), …

Coordinate Descent Algorithm

  • Successive Minimization of Univariate Functions
  • Iterative Algorithm: for $n=1,\ 2,\ …$ repeat inner cycling below
    • Inner Cycling: for $j=1,\ 2,\ …,\ p$
      • $x_{(n+1)j}arg\min_{t\in\mathbb{R}}f(x_{(n+1)1},\ …,\ x_{(n+1)(j-1)},\ t,\ x_{n(j+1)},\ …,\ x_{np}$
      • Direction vector for the $j$th inner cycling step
        • $
          \begin{equation}
          d_{nk}=
          \left\lbrace
          \begin{gathered}-sign(\partial f(\tilde x_{nj})/\partial x_j),\ &k=j\newline 0,\ &k\neq j
          \end{gathered}
          \right. \notag
          \end{equation}
          $
        • $\tilde x_{nj}=(x_{(n+1)1},\ …,\ x_{(n+1)(j=1)},\ x_{nj},\ x_{n(j+1)},\ …,\ x_{np})$
  • Inner Cycling Minimization
    • Closed Form vs. Univariate Minimization
    • Invariance to the order of coordinates
    • Individual Corrdinate vs. A Block of Coordinates
    • one-at-a-time not all-at-once
  • Convergence Cases
    • $f$: Convex and Differentiable $\rightarrow$ Always converges to a local minimizer
      • $f(x,\ y)=x^2+y^2+x+10y$
    • $f$: Convex but Not Differentiable $\rightarrow$ May stuck in a point that is not a local minimizer
      • $f(x,\ y)=(x-y)^2+(x+y)^2+|x-y|+20|x+y|$
    • CD algorithm always converges if $f(x)=g(x)+\Sigma^p_{j=1}h_j(x_j)$, where $g$ is convex differentiable and $h_j$ is convex but may not differentiable for all $j\leq p$ [Tseng, 2001]
      • $f(x,\ y)=x^2+y^2+|x|+10|y|$

Sub-Gradient (Descent) Algorithm

  • $u(x_0)$: Sub-gradient of $f$ at $x_0$ if $f(x)\geq f(x_0)+u(x_0)^T(x-x_0),\ \forall x\in B(x_0,\ \delta)$
  • Sub-Gradient Descent Algorithm: $x_{n+1}=x_n-\alpha_nu_n$
    • $u_n$: Sub-gradient at $x_n$
    • $f$: Convex but may not differentiable
    • Not a descent method
    • Stopping rule by tracing $f^{best}_n=\min\lbrace f(x_1),\ …,\ f(x_n)\rbrace$
    • Deterministic step size
      • $\alpha_n$: Small constant, square summable but not summable ($1/n$), nonsummable diminishing ($1/\sqrt{n}$), …

Stochastic Gradient (Descent) Algorithm

  • Minimizing Empirical Risk Function: $R_n(\beta)=\Sigma^n_{i=1}L(y_i,\ x_i^T\beta)$
    • Batch: Whole Samples
      • $\beta_{t+1}=\beta_t-\alpha_t\Sigma^n_{i=1}\nabla L(y_i,\ x_i^T\beta_t)$
    • Stochastic: One Random Smaple $(y_i,\ x_i)$
      • $\beta_{t+1}=\beta_t-\alpha_t\nabla L(y_i,\ x_i^T\beta_t)$
    • Mini-Batch: A Number of Random Sample $(y_i,\ x_i),\ i\in S$
      • $\beta_{t+1}=\beta_t-\alpha_t\Sigma_{i\in S}\nabla L(y_i,\ x_i^T\beta_t)$

Learning Methods

  • Linear and Logistic Regression
  • High-Dimensional Linear Regression
    • Ridge
    • LASSO
    • SCAD
  • Forward Greedy Methods
    • Forward Selection
    • Stagewise Regression
    • LARS
  • Support Vector Machine
  • Artificial Neural Network
  • Tree and Ensemble
    • Bagging
    • Random Forest
    • Boosting

Linear and Logistic Regression

Linear Regression

  • Regression Function and Prediction
    • $f(x)=x^T\beta,\ y_x=f(x)=x^T\beta$
  • Least Square Estimator, LSE: Empirical Risk Function with Square Loss
    • $R_n(\beta)=\Sigma^n_{i=1}(y_i-x_i^T\beta)^2$
  • Algorithm
    • Direct Calculation
      • $\hat\beta=(\Sigma^n_{i=1}x_ix_i^T)^{-1}\Sigma^n_{i=1}x_iy_i$
    • Gradient Descent Algorithm
      • $\beta_{t+1}=\beta_t+\alpha_t\Sigma^n_{i=1}x_i(y_i-x_i^T\beta_t)$
    • Inner Cycling for Coordinate Descent
      • $\beta_{(t+1)j}=\Sigma^n_{i=1}x_{ij}(y_i-\Sigma_{k\neq j}x_{ik}\tilde{\beta}_{tk}/\Sigma^n_{i=1}x^2_{ij})$

Other Empirical Risk Functions

  • Generalized Least Square Estimation
    • $R_n(\beta)=\Sigma_{i,\ j}(y_i-x_i^T\beta)\Omega_{ij}(y_j-x_j^T\beta)$
  • Quantile Regression
    • $R_n(\beta)=\Sigma^n_{i=1}\rho_\tau(y_i-x_i^T\beta)$
    • Linear Programming
    • Sub-Gradient Descent
  • Regularization (Penalization) via $J_\lambda$
    • $R_n^\lambda(\beta)=R_n(\beta)+\Sigma^p_{i=1}J_\lambda(|\beta_j|),\ \lambda>0$
    • Coordinate Descent Algorithm
    • Sub-Gradient Descent
    • Convex Concave Procedure

Logistic Regression

  • Regression Function and Prediction
    • $f(x)=x^T\beta,\ y_x=\phi(x)=I(f(x)>0)$
  • Empirical Risk Function
    • $R_n(\beta)=\Sigma^n_{i=1}(-y_ix_i^T\beta+log(1+exp(x_i^T\beta)))$
  • Algorithm
    • Gradient Descent Algorithm
      • $\beta_{t+1}=\beta_t-(\Sigma^n_{i=1}x_ip_{ti}(1-p_{ti})x^T_i)^{-1}\Sigma^n_{i=1}(p_{ti}-y_i)x_i$

Statistical Interpretation

  • Maximum Likelihood Estimation
    • Empirical Risk Function: Negative Log-Likelihood Function
    • Linear Regression
      • Normal Distribution Assumption with Known Variance
      • $y_i|x_i\sim N(f(x_i),\ \sigma^2),\ i\leq n$
    • Logistic Regression
      • Bernoulli Distribution Assumption
      • $y_i|x_i\sim B(1,\ exp(f(x))/(1+exp(f(x)))),\ i\leq n$
    • Another Equivalent Form for $y\in \lbrace-1,\ 1\rbrace$
      • Empirical Risk Function with Logistic Loss
      • $R_n(\beta)=\Sigma^n_{i=1}log(1+exp(-y_ix_i^T\beta))$

High-Dimensional Linear Regression

Penalized Estimation

  • Penalized Empirical Risk Functrion
    • $R_n^\lambda(f)=R_n(f)+J^\lambda(f)$
    • $R_n$: Empirical Risk Function
    • $f\in\mathcal{F}$: Regression Fuction
    • $J_\lambda$: Penalty Function
    • $\lambda$: Tuning Parameter (Vector)
  • Objectives and Characteristics
    • Regularization
    • Variable Selection
    • High-Dimensional Data Analysis
    • Structure Estimation

Variable Selection in Linear Regression

  • Penalized Empirical Risk Function for The Square Loss
    • $R_n^\lambda(\beta)=\Sigma^n_{i=1}(y_i-x_i^T\beta)+\Sigma^p_{j=1}J^\lambda(|\beta_j|)$
  • Algorithm: Penalty Functions
    • Ridge: $J^R_\lambda(|\beta|)=\lambda\beta^2$
    • LASSO: $J^L_\lambda(|\beta|)=\lambda|\beta|$
    • Bridge: $J^B_\lambda(|\beta|)=\lambda|\beta|^\nu,\ \nu>0$
    • SCAD: $\nabla\lambda^S_{\lambda,\ a}(|\beta|)=\lambda I(|\beta|<\lambda)+(\lambda-a|\beta|)+a/(a-1)I(|\beta|\geq\lambda)$
    • MC: $\nabla J^M_{\lambda,\ a}(\beta)=(\lambda-\beta/a)_+$
    • Elastic Net: $J^E_{\lambda,\ \gamma}(\beta)=\lambda\beta+\gamma\beta^2$

Ridge

  • Example) Simple Linear Regression
    • $\begin{equation}\left\lbrace\begin{gathered}R_n(\beta)=\Sigma^n_{i=1}(y_i-x_i\beta)^2=(\beta-3)^2/2\newline R^\lambda_n(\beta)=(\beta-3)^2/2+\lambda\beta^2\end{gathered}\notag\right.\end{equation}$
    • Least Square Estimator
      • $\tilde{\beta}=arg\min_\beta R_n(\beta)=3$
    • Ridge [Hoerl and Knnard, 1970]
      • $\tilde{\beta}^R=arg\min_\beta R^\lambda_n(\beta)=1/(1+2\lambda)\tilde{\beta}$
  • Results
    • Shrinkage or Biased: $|\hat\beta^R|<|\tilde{\beta}|$ for any $\lambda>0$
    • Better Mean Square Error Under Multicollinearity

LASSO

  • (Cont.) Simple Linear Regression
    • $R^\lambda_n(\beta)=(\beta-3)^2/2+\lambda|\beta|$
    • Least Square Estimator
      • $\tilde{\beta}=arg\min_\beta R_n(\beta)=3$
    • Least Absolute Shrinkage and Selection Operator (LASSO) [Tibshirani, 1996]
  • Results
    • Shrinkage or Biased: $|\hat\beta^L|<|\tilde{\beta}|$ for any $\lambda>0$
    • Sparsity or Variable Selection: $\hat\beta^L=0$ or $\hat\beta^L\neq0$ for some $\lambda$

SCAD

  • Smoothly Clipped Absolute Deviation (SCAD) [Fan and Li, 2001]
    • $R_n^\lambda=(\beta-3)^2+J_\lambda(|\beta|)$
  • Solution
    • $\begin{equation}\hat\beta^2=arg\min_\beta R^\lambda_n(\beta)=\left\lbrace\begin{aligned}0,\ &\ |\tilde{\beta}|<\lambda\newline u(\tilde{\beta},\ \lambda),\ &\ \lambda\leq|\tilde{\beta}|<a\lambda\newline\tilde{\beta},\ &\ |\tilde{\beta}|\geq a\lambda\end{aligned}\right.\notag\end{equation}$
  • Results
    • No Shrinkage or Unbiased: $\hat\beta^S=\tilde{\beta}$ for any $\lambda\leq|\tilde{\beta}|/a$
    • Sparsity: $\hat\beta^S=0$ or $\hat\beta^S\neq0$ for some $\lambda$

Coordinate Descent Algorithm

  • LSE
    • Problem: Minimize $R_n(\beta)=\Sigma^n_{i=1}(y_i-x_i^T\beta)^2/2$
    • Coordinate Function of $\beta_j$
      • $R_{nj}(\beta_j)\propto\lbrace\Sigma^n_{i=1}x_{ij}^2/2\rbrace\beta_j^2-\lbrace\Sigma^n_{i=1}x_{ij}(y_i-\Sigma_{k\neq j}x_{ik}\beta_k)\rbrace\beta_j$
    • Coordinate Descent Algorithm
      • $\tilde{\beta}_{(t+1)j}=\lbrace\Sigma^n_{i=1}x_{ij}(y_i-\Sigma_{k\neq j}x_{ik}\tilde{\beta}_{tk})\rbrace/\lbrace\Sigma^n_{i=1}x_{ij}^2\rbrace$
  • LASSO
    • Problem: Minimize $R^\lambda_n(\beta)=R_n(\beta)+\lambda\Sigma^p_{j=1}|\beta_j|$
    • Coordinate Function of $\beta_j$
      • $R_{nj}^\lambda(\beta_j)\propto R_{nj}(\beta_j)+\lambda|\beta_j|$
    • Coordinate Descent Algorithm [Friedman et al., 2007]
      • $\beta_{(t+1)j}=soft(\tilde{\beta}_{(t+1)j},\ \lambda/\Sigma^n_{i=1}x_{ij}^2)$
      • Soft-Thresholding Operator
        • $soft(x,\ \lambda)=arg\min_\beta\lbrace(\beta-x)^2/2+\lambda|\beta|\rbrace=sign(x)(|x|-\lambda)_+$
  • SCAD
    • Problem: Minimize $R_n^\lambda(\beta)=R_n(\beta)+\Sigma^p_{j=1}J_S^\lambda(|\beta_j|)$
    • CCCP + CD Algorithm [Kim et al., 2008], [Lee et al., 2016]
      • $\beta_{t+1}=arg\min_\beta U^{\lambda}_n(\beta|\beta_t)$
      • Conbex-Concave Decomposition of The Penalty
        • $J_S^\lambda(|\beta_j|)=\lambda|\beta_j|+(J_S^\lambda|\beta_j|-\lambda|\beta_j|)$
      • Upper Tight Convex Function of $R_n^\lambda$ at $\beta^c$
        • $U^\lambda_n(\beta|\beta^c)=R_n(\beta)+\Sigma^p_{j=1}\lbrace(\nabla J^\lambda_S(|\beta^c_j|)-\lambda sign(\beta^c_j))\beta_j+\lambda|\beta_j|\rbrace$

Applications

  • High Dimensional Data Analysis
    • Number of Parameters $\geq$ Number of Samples
    • Allow Various Over-Parameterized Models
  • Regularization or Stabilization
    • Applied together with almost all learning methods
    • Prevents overfit
    • Structure estimation
  • Structure Construction
    • LASSO: $\lambda\Sigma^p_{j=1}|\beta_j|\leftrightarrow\hat\beta_j=0$ or not
    • Fused LASSO [Tibshirani et al., 2005]
      • $\lambda_1\Sigma^p_{j=1}|\beta_j|+\lambda_2\Sigma^p_{j=2}|\beta_j-\beta_{j-1}|$
        • $\lambda_1$: $\hat\beta_j=0$
        • $\lambda_2$: $\hat\beta_k=\hat\beta_{k+1}=…=\hat\beta_{k’}\neq0$
    • Group LASSO [Yuan and Lin, 2006]
      • $\lambda\Sigma^K_{k=1}|\sqrt{\Sigma^{p_k}_{k=1}\beta^2_{kj}}$
    • Strong Heredity Interaction LASSO [Choi et al.m 2010]
      • $\lambda\Sigma^p_{j=1}|\beta_j|+\lambda_2\Sigma_{j<k}|\eta_{kj}|,\ \eta_{jk}=\delta_{jk}\beta_j\beta_k$
        • $\lambda_1$: $\beta_j=0$
        • $\lambda_2$: $\beta_j=0$ or $\beta_k=0\rightarrow\eta_{jk}=0$
        • $\lambda_3$: $\beta_j\neq0$ and $\beta_k\neq0\rightarrow\eta_{jk}\neq0$

Forward Greedy Methods

Forward Selection in Linear Regression

  • Algorithm: Residual-Based Forward Selection
    • Let $\beta=0$
    • For $t=1,\ 2,\ …$ repeat the followings
      1. Calculate residuals $r_i=y_i-x_i^T\beta^t,\ \ i\leq n$
      2. Find $k=arg\min_j\Sigma_i(r_i-x_{ij}\beta_j)^2$
      3. Find $\beta^{t+1}=arg\min_{\beta^t,\ \beta_k}\Sigma_i(y_i-\Sigma_Ix_{iI}\beta_I^t-x_{ik}\beta_k)^2$
  • Intuition and Result
    • It iteratively includes the variable $x_k$ that is the most correlated with current residual
    • Sequence of Least Square Estimators: $\beta^0\rightarrow\beta^1\rightarrow\beta^2\rightarrow…$

Forward Stagewise Regression

  • Originality
    • Stepwise Least Squares [Goldberger, 1961]
    • Residual Analysis [Freund et al., 1961]
  • Algorithm
    • Let $\beta=0$ and fix $\lambda^{FSW}>0$ as a small constant
    • For $t=1,\ 2,\ …$ repeat the followings
      • Calculate residuals $r_i=y_i-x_i^T\beta^t,\ i\leq n$
      • Find $(k,\ \beta_k)=arg\min_{j,\ \beta_j}\Sigma_i(r_i-x_{ij}\beta_j)^2$
      • Update $\beta^{t+1}=\beta^t+\lambda^{FSW}sign(\beta_k)$
  • Result
    • We get a long sequence of regularized estimators because of the choise $\lambda^{FSW}$

Least Angle Regression

  • Least Angle Regression (LARS) [Efron et al., 2004]
    • The same as the stragewise regression except that $\beta^{t+1}=\beta^t+\lambda^{LARS}sign(\beta_k)$
      • $\lambda^{LARS}$ makes the new residual equally correlated with all the input variables included
      • $\lambda^{LARS}$ has easy closed from w.r.t. current $\beta^t$
  • Some Connection
    • LARS-LASSO: LARS + Deletion Step = LASSO
    • LARS-Stagewise: Stagewise with $\lambda^{FSW}\rightarrow0=$LARS

Support Vector Machine

  • Support Vector Machine (SVM) for Binary Classification [Vapnik, 1995]
    • Regression Function and Prediction
      • $f(x)=b+x^Tw,\ \ y_x=\phi(x)=sign(f(x))$
    • Pernalized Problem: Pernalized Empirical Risk Function
      • $R_n^\lambda(\beta)=\Sigma_{i=1}^n\lbrace1-y_if(x_i)\rbrace_++\lambda||w||^2,\ \lambda>0$
      • Hinge Loss + Ridge Penalty
      • $x_+=\max\lbrace0,\ x\rbrace$
    • Stochastic: Sub-Gradient Algorithm [Shalev-Shwartz et al., 2007]
      • $w_{t+1}=w_t+\alpha_t\lbrace-\Sigma^n_{i=1}y_ix_iI(y_if(x_i)<1)+2\lambda w_t\rbrace$

Maximizing Margin

  • Primal Problem: Minimizing $||w||^2/2+\gamma\Sigma^n_{i=1}\xi_i,\ \gamma>0$ subject to
    $y_if(x_i)\geq1-\xi_i,\ \xi_i\geq0,\ i\leq n$
    • $\xi_i$: Slack Variable for Quantifying Degree of Missclassification
      • $x_i$ with $\xi_i=0$: Support Vector
      • $x_i$ with $0<\xi_i\leq1$: Correctly Classified Sample
      • $x_i$ with $1<\xi_i$: Incorrectly Classified Sample
    • $2/||w||$ (Margin): Distance between $f$ and support vector
  • Equivalence between primal and penalized problem
    $y_if(x_i)\geq1-\xi_i,\ \xi_i\geq0\leftrightarrow\xi_i=\max\lbrace0,\ 1-y_if(x_i)\rbrace$

KKT Conditions

  • Lagrange Primal Function with Multipliers:
    $||w||^2/2+\gamma\Sigma^n_{i=1}\xi_i-\Sigma^n_{i=1}\alpha_i\lbrace y_if(x_i)-(1-\xi_i)\rbrace-\Sigma^n_{i=1}\mu_i\xi_i$
    • Stationarity: $w=\Sigma^n_{i=1}\alpha_iy_ix_i,\ \Sigma^n_{i=1}\alpha_iy_i=0,\ \gamma=\alpha_i+\mu_i,\ i\leq n$
    • Primal and Dual Feasibility: $y_if(x_i)-(1-\xi_i)\geq0,\ \xi_i\geq0,\ i\leq n$
    • Complementary Slackness: $\alpha_i\lbrace y_if(x_i)-(1-\xi_i)\rbrace=0,\ \mu_i\xi_i=0,\ i\leq n$
  • Dual Problem: Minimizing lagrange dual objective function
    $\Sigma^n_{i=1}\Sigma^n_{j=1}y_iy_j\alpha_i\alpha_j\langle x_i,\ x_j\rangle-2\Sigma^n_{i=1}\alpha_i$ subject to $\Sigma^n_{i=1}\alpha_iy_i=0,\ -\leq\alpha_i\leq\gamma,\ i=1,\ …,\ n$
    • Quadratic Programming (QP)
    • CD Algorithm [Sequential Minimal Optimization, Platt, 1998]
      • Relation between $\alpha_i$ and $\alpha_j,\ i\neq j$
        • $y_i\alpha_i+y_j\alpha_j=-\Sigma_{k\neq i,\ j}y_k\alpha_k=c$
      • Univariate optimization from thje inequality $\alpha_i=(c-y_j\alpha_j)y_i$ under constraints $L\leq\alpha_j\leq H$ for some $0\leq L<H\leq\gamma$
  • Slope: Linear Combination of Samples (Stationarity)
    • $w=\Sigma^n_{i=1}\alpha_iy_ix_i$
  • Implicity of Slope
    • $f(x)=x^Tw+b=\Sigma^n_{i=1}\alpha_iy_ix_i^Tx+b$
    • Inner products are required only
    • Classification depends on non-zero $a_i$s, i.e., support vector $x_i$s (Sparsity)

Non-Linear Regression Function

  • Linear Solution from Optimization
    • $f(x)=\Sigma^n_{i=1}\alpha_iy_i\langle x_i,\ x\rangle+b$
  • Non-Linear Feature Transformation
    • $x\rightarrow\Phi(x),\ f(x)=\Sigma^n_{i=1}\alpha_iy_i<\Phi(x_i),\ \Phi(x)>+b$
    • Kernel Trick: Kernel Function $K$
      • $K(x,\ x’)=\langle\Phi(x_i),\ \Phi(x’)\rangle\rightarrow f(x)=\Sigma^n_{i=1}\alpha_iy_iK(x_i,\ x)$
        • Linear Kernel: $K(x,\ x’)=\langle x,\ x’\rangle$
        • D-th Order Polynomial Kernel: $K(x,\ x’)=(\langle x,\ x’\rangle+I)^d$
        • Gaussian Kernel: $K(x,\ x’)=exp(-||x-x’||^2/\sigma^2)$
        • Sigmoid Kernel: $K(x,\ x’)=tanh(\kappa_1\langle x,\ x’\rangle+\kappa_2)$
  • SVM as a penalized estimation $R_n^\lambda(\beta)=\Sigma^n_{i=1}(1-y_if(x_i))_++\lambda||f||^2_{\mathcal{H}_K},\ \lambda>0$
    • $\mathcal{H}_K$: Reproducing kernel Hilbert space w.r.t. a kernel $K$
    • Representation Theorem: The minimizer of $R_n$ is represented as $f(x)=\Sigma^n_{i=1}\alpha_iy_iK(x_i,\ x)$
      • Example)
        • $\begin{equation}\left\lbrace\begin{gathered} K(x,\ x’)=\langle\Phi(x),\ \Phi(x’)\rangle\newline\mathcal{H}_K=\lbrace\Phi(x)^Tw+b|w\in\mathbb{R}^q,\ b\in\mathbb{R}\rbrace\end{gathered}\right.\notag\rightarrow||f_{\mathcal(H)_K}||^2=||w||^2\end{equation}$

Artificial Neural Network

  • Regression function with one hidden layer
    • $y\in\mathcal{Y}\subset\mathbb{R}^k,\ f(x)=g(a(h(x)))$
    • $h$: Non-linear transformation from $x$ to hidden units via an activation function $\sigma$
      • $h(x)=(h_1(x),\ …,\ h_m(x))^T,\ h_j(x)=\sigma(x^Tw_j+b_j),\ j\leq m$
      • Sigmoid: $\sigma(t)=1/(1+exp(-t))$
      • ReLu: $\sigma(t)=max\lbrace0,\ t\rbrace$
      • RBF: $\sigma(t)=exp(-v^2/2)$
    • $a$: Linear combinations of hidden units
      • $a(h)=(a_1(h),\ …,\ a_k(h))^T,\ a_s(h)=h^Tv_s+c_s,\ s\leq k$
    • $g$: Transformation from $a$ to outputs via output functions $g_s,\ s\leq k$
      • $g(a)=(g_1(a),\ …,\ g_k(a))^T$
      • Regression, Identity: $g_s(a)=a_s$
      • Classification, Softmax: $g_s(a)=exp(a_s)/\Sigma^k_{I=1}exp(a_I)$

Empirical Risk Function

  • $R_n(\theta)=\Sigma^n_{i=1}L(y_i,\ f(x_i))$
  • $(p+1)\times m+(m+1)\times k$ Parameters
    • $\theta=(W,\ b,\ V,\ c)$
    • $W=(w_1,\ …,\ w_m)^T,\ b=(b_1,\ …,\ b_m)^T$
    • $V=(v_1,\ …,\ v_k)^T,\ c=(c_1,\ …,\ c_k)^T$
  • Loss Function
    • Regression: $L(y,\ f(x))=\Sigma^k_{s=1}(y_s-f_s(x))^2$
    • Classification: $L(y,\ f(x))=-\Sigma^k_{s=1}\lbrace y_slog(f_s(x))\rbrace$
  • Non-Convex (Non-Differentiable) Optimization
  • (Sub) Gradient Descent Algorithm
    • $\theta_{t+1}=\theta_t-\alpha_t\partial R_n(\theta_t)/\partial\theta$

Gradient Calculation (Backpropagation)

  • Risk Function Structure
    • $R=L(y,\ f)$
    • $f=g(a)$
    • $a=Vh+b$
    • $h=(\sigma(x^Tw_j+b_j),\ j\leq m)^T$
  • Chain Rule w.r.t. $v_{sl}$
    • $\partial R/\partial v_{sl}=\nabla_fL\times\nabla_ag\times\nabla_{v_{sl}}a=\lbrace\nabla_fL\times\nabla_{a_s}g\rbrace\times h_I$
  • Chain Rule w.r.t. $w_{jt}$
    • $\partial R/\partial w_{jt}=\nabla_fL\times\Sigma^k_{s=1}\nabla_{a_s}g\times v_{sj}\times\nabla_{w_{jt}}h_j$
      $=\lbrace\Sigma^k_{s=1}\lbrace\nabla_fL\times\nabla_{a_s}g\rbrace\times v_{sj}\times\sigma’(x^Tw_j+b_j)\rbrace x_t$

Tree and Ensemble

Decision Tree

  • Regression Function
    • $f(x)=\Sigma^M_{m=1}f_m(x)I[x\in R_m]$
    • $M$: Numbers of Rectangles
    • $R_m,\ m\leq M$: Disjoint Rectangular Areas in $\mathbb{R}^p$ (Terminal Nodes)
    • $f_m(x),\ m\leq M$: Local Regression Functions of Interest
  • Empirical Risk Function with A Loss $L$
    • $R_n(f_m,\ R_m,\ m\leq M)=\Sigma^n_{i=1}L(y_u,\ f(x_i))=\Sigma^M_{m=1}\Sigma_{x_i\in R_m}L(y_i,\ f_m(x_i))$
  • Top-Down Induction Algorithm
    • Set an initial Tree $f=(f_m,\ R_m,\ m\leq M)$ and repeat the followings
    • Given a tree $f$, construct $\mathcal{F}_f$ that is the set of all possible trees that can be constructed from $f$
    • Find a tree in $\mathcal{F}_f$ that minimizes the empirical risk
    • Stop if there is no gain in emprical risk or some stoping rules are satisfied
      • The Number of Areas, The Largest Area, Depth, …

Growing Regression Tree by CART

  • Regression Function
    • Local Constant: $f_m(x)=c_m$
    • Local Linear: $f_m(x)=x^T\beta_m$
  • Given a tree $f^t=(f_m^t,\ R_m^t,\ m\leq M^t)$
    • Find the set of all possible trees,
      say $\mathcal{F}^t$, by splitting $R_m^t,\ m\leq M^t$
      once: $R_m^t\rightarrow R_m^t\cap[x_j\leq c]\cup R_m^t\cap [x_j>c]$
    • Find $f^{t+1}\in\mathcal{F}^t$ by minimizing $R_n(f_m,\ R_m,\ m\leq M)=\Sigma^n_{i=1}L(y_i,\ f(x_i))$
  • Local estimation of $f$ with square loss
    • $L(y,\ f(x))=\Sigma^M_{m=1}(y-f_m(x))^2/[x\in R_m]$
    • Local Constant: $\hat c_m=\bar y_m$
    • Local Linear: $\hat{\beta}_m=(X_m^TX_m)^{-1}X_m^Ty_m$
    • $X_m$ and $y_m$: The design matrix and target vector in $R^m$
  • Regression Function: $f(x)=\Sigma^M_{m=1}f_m(x)I[x\in R_m]$
    • Voting: $f_m(x)=arg\max_k P(y=k|x\in R_m)$
  • $f^{t+1}\in\mathcal{F}^t$ by minimizing: $R_n(f_m,\ R_m,\ m\leq M)=\Sigma^n_{i=1}L(y_i,\ f(x_i))$
    • Impurity Measure (Loss): $L(y,\ f(x))=\Sigma^M_{m=1}imp_m(y,\ f_m(x))P(x\in R_m)$
  • Impurity Index: $imp_m(y,\ f_m(x))$
    • Miss-Classification Index: $1-\max_kP(y=k|x\in R_m)$
    • Gini Index: $1-\Sigma_kP(y=k|x\in R_m)^2$
    • Entropy Index: $-\Sigma_kP(y=k|x\in R_m)log_2P(y=k|x\in R_m)$
  • Local Estimation of $f$
    • $\hat P(x_i\in R_m)=\Sigma_iI(x_i\in R_m)/n$
    • $\hat f_m(x)=arg\max_k\Sigma_iI(y_i=k,\ x_i\in R_m)/\Sigma_iI(x_i\in R_m)$

ECCP

  • Pruning a tree
    • Too simple regression tree may be easy to interpret but fails to have good prediction accuracy, and too complex regression tree will overfit the samples
    • Hence, pruning process is required
    • One popular measure for pruning is the Empirical Cost-Complexity Pruning (ECCP)
  • ECCP
    • Let $f$ be the tree after the growing and stopping steps
    • Given $\alpha_0$, we find the minimizer $\hat{f}_\alpha\in\mathcal{F}$ of the ECCP,
      $C_{\alpha,\ n}(f_=\Sigma^M_{m=1}\Sigma_{x_i\in R_m}(y_i-f_m(x_i))^2+\alpha M$
      • $\mathcal{F}$: Set of all trees obtained by pruning $f$ once
      • To determine $\alpha$ we may use some methods such as test error or cross validation
    • Then the final empirical tree (estimator) $\hat{f}$ is the tree after growing, stopping and pruning
  • Pros
    • Simple interpretation
    • Easy handling of continuous and categorical inputs
    • Robust to input outliers
    • Model-free
  • Cons
    • Low prediction accuracy
    • Bad interpretation of large tree
    • Unstable or high variance
    • Bad estimation of non-squared areas

Ensemble Methods

Ensemble method is a supervised learning algorithm (technique) for combining many predictive models $\hat{f}_k,\ k\leq K$ (weak learners trained individually) into one final predictive model $\hat{f}_{ens}$ (strong learner) in the following way $\hat{f}_{env}=\Sigma^K_{k=1}w_k\hat{f}_k$ giving higher prediction accuracy

  • The strong learner is known to over-fit the training data more than weak learners theoretically
  • Some ensemble techniques such as the bagging tends to reduce problems related to over-fitting practically
  • Bagging procedure turns out to be a variance reduction scheme, at least for some base procedures
  • Boosting methods are primarily reducing the (model) bias of the base procedure
  • Random forest is a very different ensemble method than bagging or boosting. From the perspective of prediction, random forests is about as good as boosting, and often better than bagging.

Bootstrap Samples

  • Roughly speaking, the bootstrapping is a technique of copying the triaining samples many times so that we can enrich the samples
  • The samples from the bootstrapping are called bootstrap samples
  • There are many bootstrapping schemes but, we only consider the bootstrap samples
    • Let $(y_1,\ x_1),\ …,\ (y_n,\ x_n)$ be $n$ training samples
    • Randomly draw a sample from the training samples $m$ times with replacement, and then we have $(y_1^,\ x_1^),\ …,\ (y_m^,\ x_m^)$, the $m$ bootstrap samples
    • We often consider $m=n$, which is like sampling an entirely new training set
  • Not all of the training samples are included in the bootstrap samples, and are included more than oce
    • When $m=n$, about 36.8% of the training samples are left out, for large $n$

Bagging

  • Bagging is the first ensemble method [Breiman, 1996]
    • Bagging is an abbreviation of bootstrap aggregating
    • It stabilizes give predictive model by unifying models constructed with bootstrapped samples, enhancing unstable methods to have higher prediction accuracy
      • Unstable: Slightly perturbing the training set can cause signifiant changes in the estimated model
    • Among Leaarning Methods
      • One of the most stable methods is the 1-nearest neighbor method
      • One of the most unstable methods is regression tree
      • Least square estimation is less stable than Huber’s estimation
      • Subset selection method is quite unstable
  • Bagging steps: Bagging constructs a unified predictive model as follows
    • Obtain $B$ bootstrap samples of size $m$, $(y_{b1}^,\ x_{b1}^),\ …,\ (y_{bm}^,\ y_{bm}^,\ b\leq B$ from the training samples, $(y_1,\ x_1),\ …,\ (y_n,\ x_n)$ of size $n$
    • Construct $B$ weak predictive models (individually) $\hat{f}_b,\ b\leq B$ from the $B$ bootstrap samples
    • Unify the models into one predictive model $\hat{f}_{bag}$
      • Averaging for regression: $\hat{f}_{bag}=\Sigma^B_{b=1}\hat{f}_b/B$
      • Voting for classification: $\hat{f}_{bab}=arg\max_k\Sigma^B_{b=1}I(\hat{f}_b=k)/B$
  • Breiman [1996] described heuristically the performance of bagging
    • The model variance of the bagged estimator should be equal or smaller than that of the original estimator
    • There can be a drastic variance reduction if the original estimator is unstable
  • Tibshirani (CMU lecture note) discussed some disadvantages of bagging:
    • Loss of interpretability: The final bagged classifier from trees is not a tree, and so we forfeit the clear interpretative ability of a classification tree
    • Computational complexity: We are essentially multiplying the work of growing a single tree by B (especially if we are using the more involved implementation that prunes and validates on the original training data)
  • An example from Ryan Tibshirani (Wisdom of crowds)
    • Here is a simplified setup with $K=2$ classes to help understand the basic phenomenon
    • Suppose that for a given $x$ we have $B$ independent classifies $\hat{f}_b,\ b\leq B$
    • Assume each classifier has a miss-classification rate of $e=0.4$
    • Assume w.l.o.g. that the true class at $x$ is 1 so that $P(\hat{f}_b(x)=2)=0.4$
    • Now, we form the bagged classifier $\hat{f}_{bag}=arg\max_k\Sigma^B_{b=1}I(\hat{f}_b=k)/B$
    • Let $B_k=\Sigma^B_{b=1}I(\hat{f}_b=k)$ be the number of votes for class $k$
    • Notice that $B_2$ is a binomial random variable: $B_2\sim B(B,\ 0.4)$
    • Hence, the miss-classification rate of the bagged classifier is
      $E_2=P(\hat{f}_{bag}(x)=2)=P(B_2>B_1)=P(B_2\geq B/2)$
    • Easy to see $E_2\rightarrow0$ as $B\rightarrow\infty$, in other words, $\hat{f}_{bag}$ has perfect predictive accuracy as $B\rightarrow\infty$
  • What is the problem in this exaple?
    • Of course, the caveat here is independence
    • The classifiers that we use in practice $\hat{f}_b,\ b\leq B$ are clearly not independent, because they are on very similar data sets (Bootstrap samples from the training set)
  • When will Bagging fail?
    • Bagging a good classifier can improve predictive accuracy
    • Bagging a bad one can seriously degrade accuracy

Random Forest

Random Forest [Breiman, 2001] is a way to create a final prediction model by using many decision trees randomly constructed

  • It is a bagging the enforces more randomness
    • Better prediction than bagging
    • Robust to input outliers
    • Easy computation than orignal tree: No pruning, Parallel computing, …
  • Bagging from trees has a problem
    • The trees produced from bootstrap samples can be highly correlated
      • $X_i\sim(0,\ \sigma^2),\ Cor(X_i,\ X_j)=\rho,\ i,\ j\leq B\rightarrow Var(\bar{X}=\rho\sigma^2+(1-\rho)\sigma^2/B$
  • Random Forest vs. Bagging Trees
    • Constructing random forest
      • Fit a decision tree to different bootstrap samples
      • When growing the tree, use $q<p$ inputs randomly selected in each step
      • Average the trees
    • constructing bagging from trees
      • Fit a decision tree to different bootstrap samples
      • When growing the tree, use $p$ inputs in each step
      • Average the trees
  • Boosting
    • Boosting is similar to bagging in that we combine many weak predictive models
    • But, boosting is quite different to bagging and sometimes can work much better
      • We can see that boosting uses the whole training samples but adapts weights on the training samples
    • The boosting is developed to minimize training error as fast as possible, and known to give higher prediction accuracy
  • AdaBoost: Adaptive Boost
    • The first boosting algorithm is the AdaBoost (Adaptive Boost) algorithm [Freund and Schapire, 1997]
      • Initialize weights $w_i=1/n,\ i\leq n$
      • For $m\leq M$, repeat followings
        • Construct $\hat{f}_m(x)\in\lbrace-1,\ 1\rbrace$ using weights $w_i,\ i\leq n$
        • Calculate $err_m=\Sigma^n_{i=1}w_iI(y_i\neq\hat{f}_m(x_i))/\Sigma^n_{i=1}w_i$
        • Set $c_m=log((1-err_m)/err_m)$
        • Update weights $w_i$ by $w_i=w_iexp(c_mI(y_i\neq\hat{f}_m(x_i)))$
      • Construct the final model as $\hat{f}(x)=sign(\Sigma^M_{m=1}c_m\hat{f}_m(x))$
    • The most interesting part in the AdaBoost algorithm is updating the weights
      • If $err_m\leq 1/2$ then $exp(c_m)\geq1$
      • If $y_i\neq\hat{f}_m(x_i)$ then $w_i$ increases, else does not change
      • Larger weights on misclassified observations
    • Forward Stagewise Regression with Square Loss
      • Let $\beta^1=0$ and a small $\lambda>0$
      • For $t=1,\ 2,\ …$ repeat the followings
        • $(k,\ \beta_k)=arg\min_{j,\ \beta_j}\Sigma_i(y_i-\Sigma_Ix_{iI}\beta^t_I-x_{ij}\beta_j)^2$
        • $\beta^{t+1}_s=\beta^t_s+\lambda sign(\beta_k)I(s=k)$
    • Forward Stagewise Classification Tree with Exponential Loss
      • Set $M$ trees, $T_1,\ …,\ T_M$
      • Let $\beta^1=0$ and a small $\lambda>0$
      • For $t=1,\ 2,\ …$ repeat the followings
        • $(k,\ \beta_k)=arg\min_{j,\ \beta_j}\Sigma_iexp(-y_i\Sigma_IT_I(x_i)\beta^t_j-y_i\beta_jT_j(x_i))$
        • $\beta^{t+1}_s=\beta^t_s+\lambda sign(\beta_k)I(s=k)$

Model Comparison

Training-Validation Procedure

  • Way of obtaining final model by selecting extra parameter, say $\lambda$, in single learning method based on given samples $\mathcal{S}$
    • Step 1: Preparedifferent $\lambda_s$,say $\lambda_k$, $k\leq K$
    • Step 2: Divide $\mathcal{S}$ into $\mathcal{S}_{tr}\cup\mathcal{S}_{vd}$ at random.
    • Step 3 (Training): Learn models $f^{\lambda_k},\ k\leq K$ by using $\mathcal{S}_{tr}$
    • Step 4 (Validation): Calculate prediction errors by using $\mathcal{S}_{vd}$
      • $err(f^{\lambda_k}=\Sigma_{i\in\mathcal{S}_{vd}}L(y_i,\ f^{\lambda_k}(x_i)),\ k\leq K$
    • Step 5: Select optimal $\lambda=\lambda^o$
      • $o=arg\min_kerr(f^{\lambda_k})$
    • Step 6: Learn final model $f^{\lambda_k}$ by using the whole $\mathcal{S}$
  • Randomization
    • You may repeat from Step 1 to Step 4 sufficiently many times obtaining averages of validation errors
    • When the sample size is small try cross validation error
  • Complexity Control
    • The training-validation procedure can sometimes be a way of avoiding over-fit although not the best way: small training error but high test error
    • Some learning methods have their own way or empirical experience of selecting extra parameters

Training-Validation-Test Procedure

  • way of comparing two different learning methods, say $f$ and $g$ based on given samples $\mathcal{S}$
    • Step 1: Divide $\mathcal{S}$ into $\mathcal{S}_{tr}\cup\mathcal{S}_{vd}\cup\mathcal{S}_{ts}$ at random
    • Step 2: Do training-validation procedure based on $\mathcal{S}$ into $\mathcal{S}_{tr}\cup\mathcal{S}_{vd}$ for each method to obtain final models, say $f^o$ and $g^o$
    • Step 3 (Test): Calculate prediction errors of $f^o$ and $g^o$ by using $\mathcal{S}_{st}$
    • Step 4: The winner is who has smaller test error
  • Randomization
    • You may repeat from step 1 to step 4 sufficiently many times, obtaining averages of test errors